首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   163篇
  免费   0篇
航空   87篇
航天技术   27篇
航天   49篇
  2021年   3篇
  2019年   2篇
  2018年   11篇
  2017年   7篇
  2015年   2篇
  2014年   3篇
  2013年   8篇
  2012年   7篇
  2011年   12篇
  2010年   3篇
  2009年   7篇
  2008年   8篇
  2007年   8篇
  2006年   5篇
  2005年   12篇
  2004年   5篇
  2003年   3篇
  2002年   2篇
  2001年   3篇
  2000年   1篇
  1999年   5篇
  1997年   1篇
  1995年   2篇
  1994年   2篇
  1989年   1篇
  1987年   5篇
  1986年   3篇
  1984年   4篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1971年   1篇
  1969年   1篇
  1968年   5篇
  1967年   6篇
  1966年   7篇
排序方式: 共有163条查询结果,搜索用时 31 毫秒
61.
The use of interplanetary scintillations for probing otherwise inaccessible regions of the solar wind is reviewed. A comparison with space-craft observations in the ecliptic is used as a calibration for the scintillation observations. Recent observations at high latitudes and near the Sun are discussed from this viewpoint. A new analysis which uses both scintillation and angular scattering observations to estimate the electron density spectrum is introduced. The spectrum appears to have a high frequency cutoff which varies slowly with solar distances and may also have a relatively flat region just below the cutoff frequency.  相似文献   
62.
The Rotation and Interior Structure Experiment (RISE) on-board the InSight mission will use the lander’s X-band (8 GHz) radio system in combination with tracking stations of the NASA Deep Space Network (DSN) to determine the rotation of Mars. RISE will measure the nutation of the Martian spin axis, detecting for the first time the effect of the liquid core of Mars and providing in turn new constraints on the core radius and density. RISE will also measure changes in the rotation rate of Mars on seasonal time-scales thereby constraining the atmospheric angular momentum budget. Finally, RISE will provide a superb tie between the cartographic and inertial reference frames. This paper describes the RISE scientific objectives and measurements, and provides the expected results of the experiment.  相似文献   
63.
The Geology of Mercury: The View Prior to the MESSENGER Mission   总被引:1,自引:0,他引:1  
Mariner 10 and Earth-based observations have revealed Mercury, the innermost of the terrestrial planetary bodies, to be an exciting laboratory for the study of Solar System geological processes. Mercury is characterized by a lunar-like surface, a global magnetic field, and an interior dominated by an iron core having a radius at least three-quarters of the radius of the planet. The 45% of the surface imaged by Mariner 10 reveals some distinctive differences from the Moon, however, with major contractional fault scarps and huge expanses of moderate-albedo Cayley-like smooth plains of uncertain origin. Our current image coverage of Mercury is comparable to that of telescopic photographs of the Earth’s Moon prior to the launch of Sputnik in 1957. We have no photographic images of one-half of the surface, the resolution of the images we do have is generally poor (∼1 km), and as with many lunar telescopic photographs, much of the available surface of Mercury is distorted by foreshortening due to viewing geometry, or poorly suited for geological analysis and impact-crater counting for age determinations because of high-Sun illumination conditions. Currently available topographic information is also very limited. Nonetheless, Mercury is a geological laboratory that represents (1) a planet where the presence of a huge iron core may be due to impact stripping of the crust and upper mantle, or alternatively, where formation of a huge core may have resulted in a residual mantle and crust of potentially unusual composition and structure; (2) a planet with an internal chemical and mechanical structure that provides new insights into planetary thermal history and the relative roles of conduction and convection in planetary heat loss; (3) a one-tectonic-plate planet where constraints on major interior processes can be deduced from the geology of the global tectonic system; (4) a planet where volcanic resurfacing may not have played a significant role in planetary history and internally generated volcanic resurfacing may have ceased at ∼3.8 Ga; (5) a planet where impact craters can be used to disentangle the fundamental roles of gravity and mean impactor velocity in determining impact crater morphology and morphometry; (6) an environment where global impact crater counts can test fundamental concepts of the distribution of impactor populations in space and time; (7) an extreme environment in which highly radar-reflective polar deposits, much more extensive than those on the Moon, can be better understood; (8) an extreme environment in which the basic processes of space weathering can be further deduced; and (9) a potential end-member in terrestrial planetary body geological evolution in which the relationships of internal and surface evolution can be clearly assessed from both a tectonic and volcanic point of view. In the half-century since the launch of Sputnik, more than 30 spacecraft have been sent to the Moon, yet only now is a second spacecraft en route to Mercury. The MESSENGER mission will address key questions about the geologic evolution of Mercury; the depth and breadth of the MESSENGER data will permit the confident reconstruction of the geological history and thermal evolution of Mercury using new imaging, topography, chemistry, mineralogy, gravity, magnetic, and environmental data.  相似文献   
64.
Gullies found on Martian hillsides by Malin and Edgett (2000) appear in many cases to be formed by water seeps produced by underground aquifers. It is proposed that these aquifers result from geologically recent melting of permafrost ice by sporadic, localized geothermal activity. This is consistent with evidence from crater counts and Martian meteorites that much higher-temperature geothermal activity has produced volcanic activity and lava flows within the last 200 Myr, and perhaps within the last 10 Myr. This hypothesis explains an aspect initially described as surprising, namely concentration of the gullies at high latitudes and on shadowed slopes. Similar features are found on Icelandic basaltic hillsides, which may be ideal analogs for further studies that may clarify the Martian phenomena.  相似文献   
65.
66.
67.
The Mercury Atmospheric and Surface Composition Spectrometer (MASCS) is one of seven science instruments onboard the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft en route to the planet Mercury. MASCS consists of a small Cassegrain telescope with 257-mm effective focal length and a 50-mm aperture that simultaneously feeds an UltraViolet and Visible Spectrometer (UVVS) and a Visible and InfraRed Spectrograph (VIRS). UVVS is a 125-mm focal length, scanning grating, Ebert-Fastie monochromator equipped with three photomultiplier tube detectors that cover far ultraviolet (115–180 nm), middle ultraviolet (160–320 nm), and visible (250–600 nm) wavelengths with an average 0.6-nm spectral resolution. It will measure altitude profiles of known species in order to determine the composition and structure of Mercury’s exosphere and its variability and will search for previously undetected exospheric species. VIRS is a 210-mm focal length, fixed concave grating spectrograph equipped with a beam splitter that simultaneously disperses the spectrum onto a 512-element silicon visible photodiode array (300–1050 nm) and a 256-element indium-gallium-arsenide infrared photodiode array 850–1,450 nm. It will obtain maps of surface reflectance spectra with a 5-nm resolution in the 300–1,450 nm wavelength range that will be used to investigate mineralogical composition on spatial scales of 5 km. UVVS will also observe the surface in the far and middle ultraviolet at a 10-km or smaller spatial scale. This paper summarizes the science rationale and measurement objectives for MASCS, discusses its detailed design and its calibration requirements, and briefly outlines observation strategies for its use during MESSENGER orbital operations around Mercury.  相似文献   
68.
Spaceflight experiments involving biological specimens face unique challenges with regard to the on orbit harvest and preservation of material for later ground-based analyses. Preserving plant material for gene expression analyses requires that the tissue be prepared and stored in a manner that maintains the integrity of RNA. The liquid preservative RNAlater (Ambion) provides an effective alternative to conventional freezing strategies, which are limited or unavailable in current spaceflight experiment scenarios. The spaceflight use of RNAlater is enabled by the Kennedy space center fixation tube (KFT), hardware designed to provide the necessary containment of fixatives during the harvest and stowage of biological samples in space. Pairing RNAlater with the KFT system provides a safe and effective strategy for preserving plant material for subsequent molecular analyses, a strategy that has proven effective in several spaceflight experiments. Possible spaceflight scenarios for the use of RNAlater and KFTs are explored and discussed.  相似文献   
69.
Scientists and educators at Baylor College of Medicine are using space life sciences research areas as themes for middle school science and health instructional materials. This paper discusses study findings of the most recent unit, Food and Fitness, which teaches concepts related to energy and nutrition through guided inquiry. Results of a field test involving more than 750 students are reported. Use of the teaching materials resulted in significant knowledge gains by students as measured on a pre/post assessment administered by teachers. In addition, an analysis of the time spent by each teacher on each activity suggested that it is preferable to conduct all of the activities in the unit with students rather than allocating the same total amount of time on just a subset of the activities.  相似文献   
70.
The present paper discusses the use of the transformed Eulerian (or “residual”) mean-flow formulation, the Eliassen-Palm flux, and Ertel's potential vorticity to provide an increased understanding of wave, mean-flow interactions, and constituent transport processes in the stratosphere. Temperature and ozone data retrieved from radiance profiles obtained by the LIMS instrument on the Nimbus 7 satellite are utilized in conjunction with these theoretical concepts for the interpretation of phenomena that occurred during the major and minor warmings of January-February 1979. The results illustrate the insight provided by these concepts and demonstrate that useful diagnostic quantities can be derived from global satellite temperature fields.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号