首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3909篇
  免费   2篇
  国内免费   19篇
航空   2057篇
航天技术   1081篇
综合类   10篇
航天   782篇
  2019年   20篇
  2018年   186篇
  2017年   156篇
  2016年   53篇
  2015年   32篇
  2014年   50篇
  2013年   70篇
  2012年   99篇
  2011年   226篇
  2010年   192篇
  2009年   242篇
  2008年   256篇
  2007年   212篇
  2006年   72篇
  2005年   127篇
  2004年   98篇
  2003年   83篇
  2002年   53篇
  2001年   83篇
  2000年   50篇
  1999年   67篇
  1998年   80篇
  1997年   50篇
  1996年   62篇
  1995年   79篇
  1994年   79篇
  1993年   53篇
  1992年   61篇
  1991年   32篇
  1990年   32篇
  1989年   70篇
  1988年   26篇
  1987年   34篇
  1986年   32篇
  1985年   120篇
  1984年   71篇
  1983年   58篇
  1982年   59篇
  1981年   104篇
  1980年   35篇
  1979年   27篇
  1978年   25篇
  1977年   28篇
  1975年   31篇
  1973年   25篇
  1972年   20篇
  1970年   24篇
  1969年   27篇
  1967年   19篇
  1966年   19篇
排序方式: 共有3930条查询结果,搜索用时 15 毫秒
201.
Thermodynamic conditions suggest that clathrates might exist on Mars. Despite observations which show that the dominant condensed phases on the surface of Mars are solid carbon dioxide and water ice, clathrates have been repeatedly proposed to play an important role in the distribution and total inventory of the planet’s volatiles. Here we review the potential consequences of the presence of clathrates on Mars. We investigate how clathrates could be a potential source for the claimed existence of atmospheric methane. In this context, plausible clathrate formation processes, either in the close subsurface or at the base of the cryosphere, are reviewed. Mechanisms that would allow for methane release into the atmosphere from an existing clathrate layer are addressed as well. We also discuss the proposed relationship between clathrate formation/dissociation cycles and how potential seasonal variations influence the atmospheric abundances of argon, krypton and xenon. Moreover, we examine several Martian geomorphologic features that could have been generated by the dissociation of extended subsurface clathrate layers. Finally we investigate the future in situ measurements, as well as the theoretical and experimental improvements that will be needed to better understand the influence of clathrates on the evolution of Mars and its atmosphere.  相似文献   
202.
203.
The present paper discusses a need to develop a methodology of predicting the reliability of small thrust liquid rocket engines with a flow section made of composite materials under actual operating conditions for their successful practical use in the propulsion systems.  相似文献   
204.
The HP3 instrument on the InSight lander mission will measure subsurface temperatures and thermal conductivities from which heat flow in the upper few meters of the regolith at the landing site will be calculated. The parameter to be determined is steady-state conductive heat flow, but temperatures may have transient perturbations resulting from surface temperature changes and there could be a component of thermal convection associated with heat transport by vertical flow of atmospheric gases over the depth interval of measurement. The experiment is designed so that it should penetrate to a depth below which surface temperature perturbations are smaller than the required measurement precision by the time the measurements are made. However, if the measurements are delayed after landing, and/or the probe does not penetrate to the desired depth, corrections may be necessary for the transient perturbations. Thermal convection is calculated to be negligible, but these calculations are based on unknown physical properties of the Mars regolith. The effects of thermal convection should be apparent at shallow depths where transient thermal perturbations would be observed to deviate from conductive theory. These calculations were required during proposal review and their probability of predicting a successful measurement a prerequisite for mission approval. However, their uncertainties lies in unmeasured physical parameters of the Mars regolith.  相似文献   
205.
This study presents several observations of the Cluster spacecraft on September 24, 2003 around 15:10 UT, which show necessary prerequisites and consequences for the formation of the so-called modified-two-stream instability (MTSI). Theoretical studies suggest that the plasma is MTSI unstable if (1) a relative drift of electrons and ions is present, which exceeds the Alfvèn speed, and (2) this relative drift or current is in the cross-field direction. As consequences of the formation of a MTSI one expects to observe (1) a field-aligned electron beam, (2) heating of the plasma, and (3) an enhancement in the B-wave spectrum at frequencies in the range of the lower-hybrid-frequency (LHF). In this study we use prime parameter data of the CIS and PEACE instruments onboard the Cluster spacecraft to verify the drift velocities of ions and electrons, FGM data to calculate the expected LHF and Alfvèn velocity, and the direction of the current. The B-wave spectrum is recorded by the STAFF instrument of Cluster. Finally, a field aligned beam of electrons is observed by 3D measurements of the IES instrument of the RAPID unit. Observations are verified using a theoretical model showing the build-up of a MTSI under the given circumstances.  相似文献   
206.
The Athens Neutron Monitor Data Processing (ANMODAP) Center recorded an unusual Forbush decrease with a sharp enhancement of cosmic ray intensity right after the main phase of the Forbush decrease on 16 July 2005, followed by a second decrease within less than 12 h. This exceptional event is neither a ground level enhancement nor a geomagnetic effect in cosmic rays. It rather appears as the effect of a special structure of interplanetary disturbances originating from a group of coronal mass ejections (CMEs) in the 13–14 July 2005 period. The initiation of the CMEs was accompanied by type IV radio bursts and intense solar flares (SFs) on the west solar limb (AR 786); this group of energetic phenomena appears under the label of Solar Extreme Events of July 2005. We study the characteristics of these events using combined data from Earth (the ARTEMIS IV radioheliograph, the Athens Neutron Monitor (ANMODAP)), space (WIND/WAVES) and data archives. We propose an interpretation of the unusual Forbush profile in terms of a magnetic structure and a succession of interplanetary shocks interacting with the magnetosphere.  相似文献   
207.
We examined some 75 observations from the low-altitude Earth orbiting DMSP, Ørsted and CHAMP satellites which were taken in the region of the nominal cusp. Our objective was to determine whether the actually observed cusp locations as inferred from magnetosheath-like particle precipitation (“particle cusp”) and intense small-scale magnetic field variations (“current cusp”), respectively, were identical and were consistent with the statistically expected latitude of the cusp derived from a huge number of charged particle spectrograms (“statistical cusp”).  相似文献   
208.
The pivotal role played by the interplanetary magnetic field (B) in modulating galactic cosmic ray (GCR) intensity in the heliosphere is described. We show that the inverse correlation observed by Forbush (1958) between GCRs and sunspot numbers (SSNs) is reflected in high correlation between SSNs and B (cc = 0.94). The SSN data are available since 1700 and the derived B data since 1835. The paleo-cosmic ray data are available for several millennia in the form of 10Be radionuclide sequestered in polar ice. The data of the ion chambers (ICs) at the Cheltenham–Fredericksburg–Yakutsk (CFY) sites are combined to create a data string for 1937–1988. In turn, these data are used to extend the measurements of the low energy GCR ions (>0.1 GeV) at balloon altitudes at high latitudes in Russia to 1937. These data are then correlated to B and the fit parameters are used to extend the low energy ion data to 1900, creating the instrumental era GCR time series for the twentieth century. The derived GCR time series is compared to 10Be measured at two sites in Greenland, namely Dye 3 and NGRIP for 1900–2000 to check the internal consistency of datasets for the long-term trend. We find that the annual mean rate (%) for 1965 at NGRIP is an outlier. We replace it with the mean of 1964 and 1965 rates and construct a new re-normalized time series at NGIP, improving the agreement with the derived instrumental era GCR time series for the twentieth century as well. This should encourage its use by heliophysics community for varied applications.  相似文献   
209.
210.
The descent of sunspot cycle 23 to an unprecedented minimum of long duration in 2006–2009 led to a prolonged galactic cosmic ray (GCR) recovery to the highest level observed in the instrumental era for a variety of energetic charged particle species on Earth, over a wide range of rigidities. The remarkable GCR increase measured by several ground-based, balloon-borne, and detectors on a satellite is described and discussed. It is accompanied by a decrease in solar wind velocity and interplanetary magnetic field at 1 a.u., reaching the lowest values since measurements of the solar wind began in October 1963; the solar polar field strength (μT) measured at the Wilcox Solar Observatory (WSO) is also significantly reduced compared to prior cycles since the start of the program in 1976, the polar field in the northern hemisphere reversed in June 2012 and again in February 2014, that in the southern hemisphere reversed in July 2013. If updates of WSO data confirm the second reversal in northern solar hemisphere, it would pose a serious challenge to the Dynamo Theory. The long-term change in solar behavior may have begun in 1992, perhaps earlier. The physical underpinnings of these solar changes need to be understood and their effect on GCR modulation processes clarified. The study discusses the recent phenomena in the context of GCR modulation since 1900. These happenings affected our empirical predictions for the key parameters for the next two sunspot cycles (they may be progressively less active than sunspot cycle 24) but it enhanced support for our prediction that solar activity is descending into a Dalton-like grand minimum in the middle of the twentyfirst century, reducing the frequency of the coronal mass ejections; they determine the space weather affecting the quality of life on Earth, radiation dose for hardware and human activities in space as well as the frequency of large Forbush decreases at 1 a.u.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号