首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3911篇
  免费   2篇
  国内免费   19篇
航空   2057篇
航天技术   1083篇
综合类   10篇
航天   782篇
  2019年   20篇
  2018年   186篇
  2017年   156篇
  2016年   53篇
  2015年   32篇
  2014年   50篇
  2013年   70篇
  2012年   99篇
  2011年   226篇
  2010年   192篇
  2009年   242篇
  2008年   256篇
  2007年   212篇
  2006年   72篇
  2005年   127篇
  2004年   98篇
  2003年   83篇
  2002年   53篇
  2001年   83篇
  2000年   50篇
  1999年   67篇
  1998年   80篇
  1997年   50篇
  1996年   62篇
  1995年   79篇
  1994年   79篇
  1993年   53篇
  1992年   61篇
  1991年   32篇
  1990年   32篇
  1989年   70篇
  1988年   26篇
  1987年   34篇
  1986年   32篇
  1985年   121篇
  1984年   71篇
  1983年   58篇
  1982年   59篇
  1981年   104篇
  1980年   35篇
  1979年   27篇
  1978年   25篇
  1977年   28篇
  1975年   31篇
  1973年   25篇
  1972年   20篇
  1970年   24篇
  1969年   27篇
  1967年   19篇
  1966年   19篇
排序方式: 共有3932条查询结果,搜索用时 15 毫秒
181.
The modified generalized sign test processor is a nonparametric, adaptive detector for 2-D search radars. The detector ranks a sample under test with its neighboring samples and integrates (on a pulse-to-pulse basis) the ranks with a two-pole filter. A target is declared when the integrated output exceeds two thresholds. The first threshold is fixed and yields a 10-6 probability of false alarm when the neighboring samples are independent and identically distributed. The second threshold is adaptive and maintains a low false-alarm rate when the integrated neighboring samples are correlated and when there are nonhomogeneities, such as extraneous targets, in the neighboring cells. Using Monte Carlo techniques, probability of false-alarm results, probability of detection curves, and angular accuracy curves have been generated for this detector. The detector was built and PPI photographs are used to indicate the detector's performance when the radar is operated over land clutter.  相似文献   
182.
We describe for the first time the analysis of high energy electrons (above 240 MeV) from the COSPIN/KET experiment onboard Ulysses. The electron time profiles in four energy windows are presented from Oct. 90 to the end of March 94, up to a maximum heliographic latitude of 57 °S. The recovery rates we derived for the electrons are compared to the recovery rates of positively charged particles with the same rigidity.  相似文献   
183.
SWE,a comprehensive plasma instrument for the WIND spacecraft   总被引:1,自引:0,他引:1  
The Solar Wind Experiment (SWE) on the WIND spacecraft is a comprehensive, integrated set of sensors which is designed to investigate outstanding problems in solar wind physics. It consists of two Faraday cup (FC) sensors; a vector electron and ion spectrometer (VEIS); a strahl sensor, which is especially configured to study the electron strahl close to the magnetic field direction; and an on-board calibration system. The energy/charge range of the Faraday cups is 150 V to 8 kV, and that of the VEIS is 7 V to 24.8 kV. The time resolution depends on the operational mode used, but can be of the order of a few seconds for 3-D measurements. Key parameters which broadly characterize the solar wind positive ion velocity distribution function will be made available rapidly from the GGS Central Data Handling Facility.  相似文献   
184.
Le Traon  P.Y.  Hernandez  F.  Rio  M.H.  Davidson  F. 《Space Science Reviews》2003,108(1-2):239-249
With a precise geoid, GOCE will allow an estimation of absolute dynamic topography from altimetry. The projected benefits to operational oceanography and its applications are analyzed herein. After a brief overview of operational oceanography, we explain how the new geoids will be used in the future to improve real time altimeter products and to better constrain modelling and data assimilation systems. A significant impact is expected both for mesoscale (e.g. better estimations and forecasts of currents for pollution monitoring, marine safety, offshore industry) and climate (better initialization of coupled ocean/atmosphere models) applications. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
185.
Cairns  Iver H.  Knock  S.A.  Robinson  P.A.  Kuncic  Z. 《Space Science Reviews》2003,107(1-2):27-34
Recent data and theory for type II solar radio bursts are reviewed, focusing on a recent analytic quantitative theory for interplanetary type II bursts. The theory addresses electron reflection and acceleration at the type II shock, formation of electron beams in the foreshock, and generation of Langmuir waves and the type II radiation there. The theory's predictions as functions of the shock and plasma parameters are summarized and discussed in terms of space weather events. The theory is consistent with available data, has explanations for radio-loud/quiet coronal mass ejections (CMEs) and why type IIs are bursty, and can account for empirical correlations between type IIs, CMEs, and interplanetary disturbances. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
186.
Frey  H.U.  Mende  S.B.  Immel  T.J.  Gérard  J.-C.  Hubert  B.  Habraken  S.  Spann  J.  Gladstone  G.R.  Bisikalo  D.V.  Shematovich  V.I. 《Space Science Reviews》2003,109(1-4):255-283
Direct imaging of the magnetosphere by instruments on the IMAGE spacecraft is supplemented by simultaneous observations of the global aurora in three far ultraviolet (FUV) wavelength bands. The purpose of the multi-wavelength imaging is to study the global auroral particle and energy input from the magnetosphere into the atmosphere. This paper describes the method for quantitative interpretation of FUV measurements. The Wide-Band Imaging Camera (WIC) provides broad band ultraviolet images of the aurora with maximum spatial resolution by imaging the nitrogen lines and bands between 140 and 180 nm wavelength. The Spectrographic Imager (SI), a dual wavelength monochromatic instrument, images both Doppler-shifted Lyman-α emissions produced by precipitating protons, in the SI-12 channel and OI 135.6 nm emissions in the SI-13 channel. From the SI-12 Doppler shifted Lyman-α images it is possible to obtain the precipitating proton flux provided assumptions are made regarding the mean energy of the protons. Knowledge of the proton (flux and energy) component allows the calculation of the contribution produced by protons in the WIC and SI-13 instruments. Comparison of the corrected WIC and SI-13 signals provides a measure of the electron mean energy, which can then be used to determine the electron energy flux. To accomplish this, reliable emission modeling and instrument calibrations are required. In-flight calibration using early-type stars was used to validate the pre-flight laboratory calibrations and determine long-term trends in sensitivity. In general, very reasonable agreement is found between in-situ measurements and remote quantitative determinations.  相似文献   
187.
Moore  T.E.  Collier  M.R.  Fok  M.-C.  Fuselier  S.A.  Khan  H.  Lennartsson  W.  Simpson  D.G.  Wilson  G.R.  Chandler  M.O. 《Space Science Reviews》2003,109(1-4):351-371
Development of the low energy neutral atom (LENA) imager was originally motivated by a need to remotely sense plasma heating in the topside ionosphere, with the goal of greatly enhanced temporal resolution of an otherwise familiar phenomenon. During ground test and calibration, the LENA imager was found to respond to neutral atoms with energies well above its nominal energy range of 10–750 eV, up to at least 3–4 keV, owing to sputtering interactions with its conversion surface. On orbit, LENA has been found to respond to a ubiquitous neutral atom component of the solar wind, to the neutral atoms formed by magnetosheath interactions with the geocorona during periods of high solar wind pressure, and to the interstellar neutral atoms flowing through the heliosphere during the season of maximal relative wind velocity between spacecraft and interstellar medium. LENA imaging has thus emerged as a promising new tool for studying the interplanetary medium and its interaction with the magnetosphere, in addition to the ionospheric heating and outflow that result from this interaction. LENA emissions from the ionosphere consist of a fast component that can be observed at high altitudes, and slower components that evidently create a quasi-trapped extended superthermal exosphere. The more energetic emissions are responsive to solar wind energy inputs on time scales of a few minutes.  相似文献   
188.
The Cassini visual and infrared mapping spectrometer (VIMS) investigation is a multidisciplinary study of the Saturnian system. Visual and near-infrared imaging spectroscopy and high-speed spectrophotometry are the observational techniques. The scope of the investigation includes the rings, the surfaces of the icy satellites and Titan, and the atmospheres of Saturn and Titan. In this paper, we will elucidate the major scientific and measurement goals of the investigation, the major characteristics of the Cassini VIMS instrument, the instrument calibration, and operation, and the results of the recent Cassini flybys of Venus and the Earth–Moon system.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
189.
The Cassini-Huygens Cosmic Dust Analyzer (CDA) is intended to provide direct observations of dust grains with masses between 10−19 and 10−9 kg in interplanetary space and in the jovian and saturnian systems, to investigate their physical, chemical and dynamical properties as functions of the distances to the Sun, to Jupiter and to Saturn and its satellites and rings, to study their interaction with the saturnian rings, satellites and magnetosphere. Chemical composition of interplanetary meteoroids will be compared with asteroidal and cometary dust, as well as with Saturn dust, ejecta from rings and satellites. Ring and satellites phenomena which might be effects of meteoroid impacts will be compared with the interplanetary dust environment. Electrical charges of particulate matter in the magnetosphere and its consequences will be studied, e.g. the effects of the ambient plasma and the magnetic field on the trajectories of dust particles as well as fragmentation of particles due to electrostatic disruption.The investigation will be performed with an instrument that measures the mass, composition, electric charge, speed, and flight direction of individual dust particles. It is a highly reliable and versatile instrument with a mass sensitivity 106 times higher than that of the Pioneer 10 and 11 dust detectors which measured dust in the saturnian system. The Cosmic Dust Analyzer has significant inheritance from former space instrumentation developed for the VEGA, Giotto, Galileo, and Ulysses missions. It will reliably measure impacts from as low as 1 impact per month up to 104 impacts per second. The instrument weighs 17 kg and consumes 12 W, the integrated time-of-flight mass spectrometer has a mass resolution of up to 50. The nominal data transmission rate is 524 bits/s and varies between 50 and 4192 bps.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
190.
The Cassini Imaging Science Subsystem (ISS) is the highest-resolution two-dimensional imaging device on the Cassini Orbiter and has been designed for investigations of the bodies and phenomena found within the Saturnian planetary system. It consists of two framing cameras: a narrow angle, reflecting telescope with a 2-m focal length and a square field of view (FOV) 0.35 across, and a wide-angle refractor with a 0.2-m focal length and a FOV 3.5 across. At the heart of each camera is a charged coupled device (CCD) detector consisting of a 1024 square array of pixels, each 12 μ on a side. The data system allows many options for data collection, including choices for on-chip summing, rapid imaging and data compression. Each camera is outfitted with a large number of spectral filters which, taken together, span the electromagnetic spectrum from 200 to 1100 nm. These were chosen to address a multitude of Saturn-system scientific objectives: sounding the three-dimensional cloud structure and meteorology of the Saturn and Titan atmospheres, capturing lightning on both bodies, imaging the surfaces of Saturn’s many icy satellites, determining the structure of its enormous ring system, searching for previously undiscovered Saturnian moons (within and exterior to the rings), peering through the hazy Titan atmosphere to its yet-unexplored surface, and in general searching for temporal variability throughout the system on a variety of time scales. The ISS is also the optical navigation instrument for the Cassini mission. We describe here the capabilities and characteristics of the Cassini ISS, determined from both ground calibration data and in-flight data taken during cruise, and the Saturn-system investigations that will be conducted with it. At the time of writing, Cassini is approaching Saturn and the images returned to Earth thus far are both breathtaking and promising.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号