首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   355篇
  免费   0篇
  国内免费   2篇
航空   245篇
航天技术   38篇
综合类   1篇
航天   73篇
  2022年   1篇
  2021年   4篇
  2019年   2篇
  2018年   71篇
  2017年   41篇
  2016年   2篇
  2015年   8篇
  2014年   3篇
  2013年   15篇
  2012年   9篇
  2011年   25篇
  2010年   10篇
  2009年   11篇
  2008年   14篇
  2007年   17篇
  2006年   5篇
  2005年   14篇
  2004年   9篇
  2003年   6篇
  2002年   2篇
  2001年   9篇
  2000年   3篇
  1999年   8篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   3篇
  1993年   4篇
  1992年   2篇
  1991年   1篇
  1989年   3篇
  1987年   6篇
  1986年   4篇
  1985年   2篇
  1984年   6篇
  1983年   3篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1973年   1篇
  1971年   1篇
  1969年   1篇
  1968年   5篇
  1967年   7篇
  1966年   7篇
排序方式: 共有357条查询结果,搜索用时 328 毫秒
321.
322.
Surface matching is a well researched topic in both Computer Vision (CV) and terrestrial laser scanning (TLS) or ground based light detection and ranging (LiDAR), but the extent of the range images derived from these technologies is typically orders of magnitude smaller than those derived from airborne laser scanning (ALS), also known as airborne LiDAR. Iterative closest point (ICP) and its variants have been successfully used to align and register multiple overlapping views of the range images for CV and TLS applications. However, many challenges are encountered in applying the ICP approach to ALS data sets. In this paper, we address these issues, explore the possibility of automating the algorithm, and present a technique to adjust systematic discrepancies in overlapping strips, using geometrical attributes in a given terrain. In this method, the ALS point samples used in the algorithm are selected depending on their ability to constrain the relative movement between the overlapping laser strips. The points from overlapping strips are matched through modified point to plane based on the ICP method.  相似文献   
323.
Space Exploration educators worldwide are confronting challenges and embracing opportunities to prepare students for the global 21st century workforce. The National Space Biomedical Research Institute (NSBRI), established in 1997 through a NASA competition, is a 12-university consortium dedicated to space life science research and education. NSBRI's Education and Public Outreach Program (EPOP) is advancing the Institute's mission by responding to global educational challenges through activities that: provide teacher professional development; develop curricula that teach students to communicate with their peers across the globe; provide women and minority US populations with greater access to, and awareness of science careers; and promote international science education partnerships.A recent National Research Council (NRC) Space Studies Board Report, America's Future in Space: Aligning the Civil Program with National Needs, acknowledges that “a capable workforce for the 21st century is a key strategic objective for the US space program… (and that) US problems requiring best efforts to understand and resolve…are global in nature and must be addressed through mutual worldwide action”. [1] This sentiment has gained new momentum through a recent National Aeronautics and Space Administration (NASA) report, which recommends that the life of the International Space Station be extended beyond the planned 2016 termination. [2] The two principles of globalization and ISS utility have elevated NSBRI EPOP efforts to design and disseminate science, technology, engineering and mathematics (STEM) educational materials that prepare students for full participation in a globalized, high technology society; promote and provide teacher professional development; create research opportunities for women and underserved populations; and build international educational partnerships.This paper describes select EPOP projects and makes the case for using innovative, emerging information technologies to transfer space exploration knowledge to students, engage educators from across the globe in discourse about science curricula, and foster multimedia collaborations that inform citizens about the benefits of space exploration for life on Earth. Special references are made to educational activities conducted at professional meetings in Austria, Canada, France, China, Greece, Italy, Russia, Scotland and Spain.  相似文献   
324.
325.
In an attempt to explain the influence of space processing on the microstructure of MnBiBi, eutectic mixtures were directionally solidified with a sudden change of translation rate. The MnBi fiber spacing was able to adapt to the changing freezing rate as predicted by heat transfer computations. Thus the microstructure adapts more rapidly than the freezing rate could be changed in the present experiments.  相似文献   
326.
The observational information on X-ray binaries that was collected with the 80 cm2 auxiliary X-ray detector onboard the COS-B gamma-ray satellite is reviewed. The results illustrate that in the study of X-ray binaries observations of long duration are extremely effective, even when using a small instrument.  相似文献   
327.
328.
329.
This article reviews the revolution in remote sensing which has taken place over the past 25 years. This revolution could not have occurred without the closest cooperation among government agencies, industry and academia. International cooperation is shown to be essential in carrying out the bold missions planned for the next decade. The article reviews the history of the NASA-NOAA relationship, and the history of international partnerships with emphasis on development of the operational METSAT system. The government-industry partnership is also reviewed, with case studies to examine the evolution of METSAT sensor design, LANDSAT commercialization, and the NOAA Administrator's new initiative to facilitate development of a commercial Ocean Color Instrument. Government interaction with academia, in the form of National Science Foundation programmes and government-university ‘cooperative institutes’, is reviewed. The author concludes by showing how plans for integrating research and operations on Space Station platforms can only succeed through an alliance of all the remote-sensing players.  相似文献   
330.
We discuss the rationale for a semi-permanent all-sky X-ray monitor, and investigate a variety of options for its implementation. We conclude that the Space Station offers an excellent opportunity for hosting such a monitor, and that a set of pinhole cameras can be configured to provide an effective and economical monitor system. A baseline of six independent pinhole modules, each of which requires approximately one cubic foot, 30 pounds, 2 watts, and 100 bits per second, can provide full sky coverage with scientifically interesting sensitivities. No other resources or special accommodation (such as detailed alignment registration, time-tagging or on-orbit servicing) would be required. The baseline system can locate bright sources to a few arc min, and can simultaneously measure each of the several hundred sources in the sky brighter than a few thousandths the intensity of the Crab nebula every day for decades.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号