全文获取类型
收费全文 | 357篇 |
免费 | 1篇 |
国内免费 | 3篇 |
专业分类
航空 | 247篇 |
航天技术 | 40篇 |
综合类 | 1篇 |
航天 | 73篇 |
出版年
2024年 | 1篇 |
2022年 | 1篇 |
2021年 | 4篇 |
2020年 | 2篇 |
2019年 | 2篇 |
2018年 | 71篇 |
2017年 | 41篇 |
2016年 | 3篇 |
2015年 | 8篇 |
2014年 | 3篇 |
2013年 | 15篇 |
2012年 | 9篇 |
2011年 | 25篇 |
2010年 | 10篇 |
2009年 | 11篇 |
2008年 | 14篇 |
2007年 | 17篇 |
2006年 | 5篇 |
2005年 | 14篇 |
2004年 | 9篇 |
2003年 | 6篇 |
2002年 | 2篇 |
2001年 | 9篇 |
2000年 | 3篇 |
1999年 | 8篇 |
1997年 | 1篇 |
1996年 | 1篇 |
1995年 | 2篇 |
1994年 | 3篇 |
1993年 | 4篇 |
1992年 | 2篇 |
1991年 | 1篇 |
1989年 | 3篇 |
1987年 | 6篇 |
1986年 | 4篇 |
1985年 | 2篇 |
1984年 | 6篇 |
1983年 | 3篇 |
1982年 | 2篇 |
1981年 | 2篇 |
1980年 | 1篇 |
1979年 | 1篇 |
1978年 | 1篇 |
1977年 | 1篇 |
1973年 | 1篇 |
1971年 | 1篇 |
1969年 | 1篇 |
1968年 | 5篇 |
1967年 | 7篇 |
1966年 | 7篇 |
排序方式: 共有361条查询结果,搜索用时 15 毫秒
261.
262.
Cellular mobile telephone systems are rapidly going into service throughout the Continental United States. They are being installed in a large variety of vehicles both of domestic and of foreign manufacture. In this paper we discuss the physical, climatic, and electronic environments which cellular telephones may expect to encounter in nationwide service. We also discuss procedures used to evaluate the ability of a cellular phone to operate without failure in these environments and to avoid interfering with the increasingly complex vehicular electronic systems. 相似文献
263.
Peters Lloyd S. Brackmann Elizabeth J. Park William T. 《Aerospace and Electronic Systems Magazine, IEEE》1987,2(2):12-16
The current emphasis on designing flexible manufacturing systems, particularly in the electronics manufacturing industry, is bringing automation and robotics technologies to the factory at increasing rates. The rate of advance in these technologies raises serious concerns among engineers and managers about how to proceed in building modern manufacturing systems. A large portion of this uncertainty results from the difficulty of fitting technological advances into the existing models of manufacturing. What is needed is a new framework within which to perceive automation and robotics which will permit the adoption of more encompassing design strategies and principles to be followed in the practice of modernizing and maintaining advanced electronics manufacturing systems. This paper provides a framework that might be adopted to structure new strategies for incorporating automation and robotics in manufacturing. The approach is one that we at SRI have found useful in considering automation and robotics issues for the NASA Space Station and other complex systems which need to incorporate new technologies throughout long lifetimes. These same issues are becoming increasingly important in electronics manufacturing system design and development. 相似文献
264.
Joshua Poganski Norbert I. Kömle Günter Kargl Helmut F. Schweiger Matthias Grott Tilman Spohn Olaf Krömer Christian Krause Torben Wippermann Georgios Tsakyridis Mark Fittock Roy Lichtenheldt Christos Vrettos José E. Andrade 《Space Science Reviews》2017,211(1-4):217-236
The NASA InSight mission will provide an opportunity for soil investigations using the penetration data of the heat flow probe built by the German Aerospace Center DLR. The Heat flow and Physical Properties Probe (HP3) will penetrate 3 to 5 meter into the Martian subsurface to investigate the planetary heat flow. The measurement of the penetration rate during the insertion of the HP3 will be used to determine the physical properties of the soil at the landing site. For this purpose, numerical simulations of the penetration process were performed to get a better understanding of the soil properties influencing the penetration performance of HP3. A pile driving model has been developed considering all masses of the hammering mechanism of HP3. By cumulative application of individual stroke cycles it is now able to describe the penetration of the Mole into the Martian soil as a function of time, assuming that the soil parameters of the material through which it penetrates are known. We are using calibrated materials similar to those expected to be encountered by the InSight/HP3 Mole when it will be operated on the surface of Mars after the landing of the InSight spacecraft. We consider various possible scenarios, among them a more or less homogeneous material down to a depth of 3–5 m as well as a layered ground, consisting of layers with different soil parameters. Finally we describe some experimental tests performed with the latest prototype of the InSight Mole at DLR Bremen and compare the measured penetration performance in sand with our modeling results. Furthermore, results from a 3D DEM simulation are presented to get a better understanding of the soil response. 相似文献
265.
Hart KM Szpak MT Mahaney WC Dohm JM Jordan SF Frazer AR Allen CC Kelleher BP 《Astrobiology》2011,11(4):303-321
The Dry Valleys of Antarctica are one of the coldest and driest environments on Earth with paleosols in selected areas that date to the emplacement of tills by warm-based ice during the Early Miocene. Cited as an analogue to the martian surface, the ability of the Antarctic environment to support microbial life-forms is a matter of special interest, particularly with the upcoming NASA/ESA 2018 ExoMars mission. Lipid biomarkers were extracted and analyzed by gas chromatography--mass spectrometry to assess sources of organic carbon and evaluate the contribution of microbial species to the organic matter of the paleosols. Paleosol samples from the ice-free Dry Valleys were also subsampled and cultivated in a growth medium from which DNA was extracted with the explicit purpose of the positive identification of bacteria. Several species of bacteria were grown in solution and the genus identified. A similar match of the data to sequenced DNA showed that Alphaproteobacteria, Gammaproteobacteria, Bacteriodetes, and Actinobacteridae species were cultivated. The results confirm the presence of bacteria within some paleosols, but no assumptions have been made with regard to in situ activity at present. These results underscore the need not only to further investigate Dry Valley cryosols but also to develop reconnaissance strategies to determine whether such likely Earth-like environments on the Red Planet also contain life. 相似文献
266.
During the next two decades, we will establish the foundation for the 21st century's accomplishments in space. The Space Shuttle vehicle will become the cornerstone for that foundation by providing economical opportunities for space exploration and utilization.Reusability of the Shuttle vehicle is the key to its economy. The major developmental challenges encountered in the Shuttle program are typified by the complexities involved in designing the reusable propulsion and thermal protection subsystems. We successfully met such challenges and are nearing the launch of the first Shuttle orbital flight.Our immediate goal is to enter the Space Shuttle operational phase because only then will we fully understand the unique capabilities of the Shuttle. Concurrent with our effort to begin Shuttle operations are our initial efforts to expand Shuttle capabilities, extending them significantly beyond those of the current baseline system.Shuttle payload capacity and mission-duration capabilities are to increase considerably during the next decade. Just as present Shuttle performance specifications and development timetables were guided by the space program plans and forecasts of the 1960s, so will the development of long-range space programs be determined by our near-future achievements. We anticipate that the Space Shuttle will play a critical role in those achievements. 相似文献
267.
This report provides a rationale for the advances in instrumentation and understanding needed to assess claims of ancient and extraterrestrial life made on the basis of morphological biosignatures. Morphological biosignatures consist of bona fide microbial fossils as well as microbially influenced sedimentary structures. To be recognized as evidence of life, microbial fossils must contain chemical and structural attributes uniquely indicative of microbial cells or cellular or extracellular processes. When combined with various research strategies, high-resolution instruments can reveal such attributes and elucidate how morphological fossils form and become altered, thereby improving the ability to recognize them in the geological record on Earth or other planets. Also, before fossilized microbially influenced sedimentary structures can provide evidence of life, criteria to distinguish their biogenic from non-biogenic attributes must be established. This topic can be advanced by developing process-based models. A database of images and spectroscopic data that distinguish the suite of bona fide morphological biosignatures from their abiotic mimics will avoid detection of false-positives for life. The use of high-resolution imaging and spectroscopic instruments, in conjunction with an improved knowledge base of the attributes that demonstrate life, will maximize our ability to recognize and assess the biogenicity of extraterrestrial and ancient terrestrial life. 相似文献
268.
Bartley William C. McCracken Kenneth G. Rao U.R. 《IEEE transactions on aerospace and electronic systems》1967,(2):230-235
This paper describes an aspect system flown on PIONEERS VI and VII2 which incorporates an extremely accurate adaptive digital computer in order to define rigorously equal time intervals which are submultiples of the spacecraft spin period. The several submultiples which compose the complete spin period exhibit equality to within 2.5 parts in 105. This system has potential applications in other experiments involving the study of the angular dependence of cosmic radiation and other physical phenomena being measured by a single directional detector mounted on spin-stabilized spacecraft. Included here are the scientific goals for this experiment, system restraints, and the generalized system operation. Some details on specific logic and hardware implementation for the Pioneer experiments are included along with in-flight performance evaluation of the system aboard PIONEER VI. 相似文献
269.
Edwards Christopher S. Christensen Philip R. Mehall Greg L. Anwar Saadat Tunaiji Eman Al Badri Khalid Bowles Heather Chase Stillman Farkas Zoltan Fisher Tara Janiczek John Kubik Ian Harris-Laurila Kelly Holmes Andrew Lazbin Igor Madril Edgar McAdam Mark Miner Mark O’Donnell William Ortiz Carlos Pelham Daniel Patel Mehul Powell Kathryn Shamordola Ken Tourville Tom Smith Michael D. Smith Nathan Woodward Rob Weintraub Aaron Reed Heather Pilinski Emily B. 《Space Science Reviews》2021,217(7):1-37
Space Science Reviews - Modern observatories have revealed the ubiquitous presence of magnetohydrodynamic waves in the solar corona. The propagating waves (in contrast to the standing waves) are... 相似文献
270.
Elena I. Novikova William F. Dietrich Allan J. Tylka Jeb Collins Bernard F. Phlips 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2010
Modern instrument-simulation techniques offer the possibility of increasing the scientific yield from archival space datasets. In this paper, we report on a simulation of the electron response of the University of Chicago’s Cosmic Ray Nuclei Experiment (CRNE) instrument on the IMP-8 satellite. IMP-8/CRNE returned data from 1973 to 2006. The CRNE particle telescope was designed to measure the isotopic composition of Galactic cosmic-ray (GCR) nuclei and has also been used in many studies of protons and ions above 10 MeV/nucleon from solar energetic particle (SEP) events. But CRNE also functions as a highly-capable detector for solar electrons above 0.5 MeV, an energy range that has not been extensively studied. Utilization of the CRNE electron data has heretofore been limited by the fact that CRNE was never calibrated for electrons. We have therefore used the GEANT4 Monte Carlo simulation package to model the CRNE response to electrons and (separately) protons for multiple energies and incident angles. The results were used to compute the energy- and angle-dependence of the effective area and the energy-dependence of the geometric factor. The response to protons, which was already well understood, was used to verify the mass model, the simulation settings, and the post-processing software. Our simulation of the IMP-8/CRNE electron response now allows analysis of hundreds of relativistic solar electron events observed by CRNE over the years, including studies of evolution of electron energy spectra with high time resolution. We show examples of these results and briefly discuss potential applications to future scientific investigations. 相似文献