首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   86篇
  免费   0篇
  国内免费   1篇
航空   19篇
航天技术   43篇
航天   25篇
  2019年   1篇
  2018年   3篇
  2014年   2篇
  2013年   1篇
  2012年   1篇
  2011年   9篇
  2010年   2篇
  2009年   2篇
  2008年   6篇
  2007年   5篇
  2006年   3篇
  2005年   2篇
  2004年   8篇
  2003年   4篇
  2002年   2篇
  2000年   1篇
  1998年   4篇
  1997年   4篇
  1996年   9篇
  1995年   1篇
  1994年   7篇
  1993年   1篇
  1992年   4篇
  1987年   3篇
  1980年   1篇
  1977年   1篇
排序方式: 共有87条查询结果,搜索用时 31 毫秒
61.
Changed political objectives, straitened economic circumstances and an altered balance of capability and expertise in space endeavours have together produced more discussion of the need for international cooperation than ever before, but the meaning of the term has subtly shifted. Insisting on US ‘leadership’ is self-defeating; what is instead firmly desired by the USA's potential partners is a balanced relationship in which each nation makes an identifiable contribution and takes the lead in at least one of a package of projects. If this is going to happen, there must be an international forum or framework in which projects can be discussed and agreed. This in turn requires initiative at governmental level.  相似文献   
62.
Edible biomass from four crops of wheat (Triticum aestivum L.), four crops of lettuce (Lactuca sativa L.), four crops of potato (Solanum tuberosum L.), and three crops of soybean (Glycine max (L.) Merr.) grown in NASA's CELSS Biomass Production Chamber were analyzed for proximate composition. All plants were grown using recirculating nutrient (hydroponic) film culture with pH and electrical conductivity automatically controlled. Temperature and humidity were controlled to near optimal levels for each species and atmospheric carbon dioxide partial pressures were maintained near 100 Pa during the light cycles. Soybean seed contained the highest percentage of protein and fat, potato tubers and wheat seed contained the highest levels of carbohydrate, and lettuce leaves contained the highest level of ash. Analyses showed values close to data published for field-grown plants with several exceptions: In comparison with field-grown plants, wheat seed had higher protein levels; soybean seed had higher ash and crude fiber levels; and potato tubers and lettuce leaves had higher protein and ash levels. The higher ash and protein levels may have been a result of the continuous supply of nutrients (e.g., potassium and nitrogen) to the plants by the recirculating hydroponic culture.  相似文献   
63.
Clouds and Hazes of Venus   总被引:1,自引:0,他引:1  
More than three decades have passed since the publication of the last review of the Venus clouds and hazes. The paper published in 1983 in the Venus book summarized the discoveries and findings of the US Pioneer Venus and a series of Soviet Venera spacecraft (Esposito et al. in Venus, p. 484, 1983). Due to the emphasis on in-situ investigations from descent probes, those missions established the basic features of the Venus cloud system, its vertical structure, composition and microphysical properties. Since then, significant progress in understanding of the Venus clouds has been achieved due to exploitation of new observation techniques onboard Galileo and Messenger flyby spacecraft and Venus Express and Akatsuki orbiters. They included detailed investigation of the mesospheric hazes in solar and stellar occultation geometry applied in the broad spectral range from UV to thermal IR. Imaging spectroscopy in the near-IR transparency “windows” on the night side opened a new and very effective way of sounding the deep atmosphere. This technique together with near-simultaneous UV imaging enabled comprehensive study of the cloud morphology from the cloud top to its deep layers. Venus Express operated from April 2006 until December 2014 and provided a continuous data set characterizing Venus clouds and hazes over a time span of almost 14 Venus years thus enabling a detailed study of temporal and spatial variability. The polar orbit of Venus Express allowed complete latitudinal coverage. These studies are being complemented by JAXA Akatsuki orbiter that began observations in May 2016. This paper reviews the current status of our knowledge of the Venus cloud system focusing mainly on the results acquired after the Venera, Pioneer Venus and Vega missions.  相似文献   
64.
An international effort dedicated to the science exploration of Jupiter system planned by ESA and NASA in the beginning of the next decade includes in-depth science investigation of Europa. In parallel to EJSM (Europa-Jupiter System Mission) Russia plans a Laplace-Europa Lander mission, which will include another orbiter and the surface element: Europa Lander. In-situ methods on the lander provide the only direct way to assess environmental conditions, and to perform the search for signatures of life. A critical advantage of such in situ analysis is the possibility to enhance concentration and detection limits and to provide ground truth for orbital measurements. The science mission of the lander is biological, geophysical, chemical, and environmental characterizations of the Europa surface. This review is dedicated to methods and strategies of geophysical and environmental measurements to be performed at the surface of Europa, and their significance for the biological assessment, basing on the concept of a relatively large softly landed module, allowing to probe a shallow subsurface. Many of the discussed methods were presented on the workshop “Europa Lander: Science Goals and Experiments” held in Moscow in February 2009. Methods and instruments are grouped into geophysical package, means of access to the subsurface, methods of chemical and structural characterization, and methods to assess physical conditions on the surface.  相似文献   
65.
The term “ultraviolet (UV) burst” is introduced to describe small, intense, transient brightenings in ultraviolet images of solar active regions. We inventorize their properties and provide a definition based on image sequences in transition-region lines. Coronal signatures are rare, and most bursts are associated with small-scale, canceling opposite-polarity fields in the photosphere that occur in emerging flux regions, moving magnetic features in sunspot moats, and sunspot light bridges. We also compare UV bursts with similar transition-region phenomena found previously in solar ultraviolet spectrometry and with similar phenomena at optical wavelengths, in particular Ellerman bombs. Akin to the latter, UV bursts are probably small-scale magnetic reconnection events occurring in the low atmosphere, at photospheric and/or chromospheric heights. Their intense emission in lines with optically thin formation gives unique diagnostic opportunities for studying the physics of magnetic reconnection in the low solar atmosphere. This paper is a review report from an International Space Science Institute team that met in 2016–2017.  相似文献   
66.
Most discussion of habitable planets has focused on Earth-like planets with globally abundant liquid water. For an "aqua planet" like Earth, the surface freezes if far from its sun, and the water vapor greenhouse effect runs away if too close. Here we show that "land planets" (desert worlds with limited surface water) have wider habitable zones than aqua planets. For planets at the inner edge of the habitable zone, a land planet has two advantages over an aqua planet: (i) the tropics can emit longwave radiation at rates above the traditional runaway limit because the air is unsaturated and (ii) the dry air creates a dry stratosphere that limits hydrogen escape. At the outer limits of the habitable zone, the land planet better resists global freezing because there is less water for clouds, snow, and ice. Here we describe a series of numerical experiments using a simple three-dimensional global climate model for Earth-sized planets. Other things (CO(2), rotation rate, surface pressure) unchanged, we found that liquid water remains stable at the poles of a low-obliquity land planet until net insolation exceeds 415 W/m(2) (170% that of modern Earth), compared to 330 W/m(2) (135%) for the aqua planet. At the outer limits, we found that a low-obliquity land planet freezes at 77%, while the aqua planet freezes at 90%. High-obliquity land and aqua planets freeze at 58% and 72%, respectively, with the poles offering the last refuge. We show that it is possible that, as the Sun brightens, an aqua planet like Earth can lose most of its hydrogen and become a land planet without first passing through a sterilizing runaway greenhouse. It is possible that Venus was a habitable land planet as recently as 1 billion years ago.  相似文献   
67.
The outer solar system is an important area of investigation for exobiology, the study of life in the universe. Several moons of the outer planets involve processes and structures comparable to those thought to have played an important role in the emergence of life on Earth, such as the formation and exchange of organic materials between different reservoirs. The study of these prebiotic processes on, and in, outer solar system moons is a key goal for exobiology, together with the question of habitability and the search for evidence of past or even present life. This chapter reviews the aspects of prebiotic chemistry and potential presence of life on Europa, Enceladus and Titan, based on the most recent data obtained from space missions as well as theoretical and experimental laboratory models. The habitability of these extraterrestrial environments, which are likely to include large reservoirs of liquid water in their internal structure, is discussed as well as the particular case of Titan’s hydrocarbon lakes. The question of planetary protection, especially in the case of Europa, is also presented.  相似文献   
68.
A monitoring and control subsystem architecture has been developed that capitalizes on the use of model-driven monitoring and predictive control, knowledge-based data representation, and artificial reasoning in an operator support mode. We have developed an object-oriented model of a Controlled Ecological Life Support System (CELSS). The model, based on the NASA Kennedy Space Center CELSS breadboard data, tracks carbon, hydrogen, and oxygen, carbon dioxide, and water. It estimates and tracks resource-related parameters such as mass, energy, and manpower measurements such as growing area required for balance. We are developing an interface with the breadboard systems that is compatible with artificial reasoning. Initial work is being done on use of expert systems and user interface development. This paper presents our approach to defining universally applicable CELSS monitor and control issues, and implementing appropriate monitor and control capability for a particular instance: the KSC CELSS Breadboard Facility.  相似文献   
69.
Separate controlled environment studies were conducted to determine the interaction of CO2 with irradiance and interaction of CO2 with temperature on growth of three potato cultivars. In the first study, an elevated CO2 concentration of 1000 micromoles mol-1 and an ambient CO2 of 350 micromoles mol-1 were maintained at the photosynthetic photon fluxes (PPF) of 17 and 34 mol m-2 d-1 with 12 h photoperiod, and at the PPF of 34 and 68 mol m-2 d-1 with 24 h photoperiod (400 and 800 micromoles m-2 s-1 PPF at each photoperiod). Tuber and total dry weights of 90-day old potatoes were significantly increased with CO2 enrichment, but the CO2 stimulation was less with higher PPF and longer photoperiod. Shoot dry weight was affected more by photoperiod than by PPF and CO2 concentrations. The elevated CO2 concentration increased leaf CO2 assimilation rates and decreased stomatal conductance with 12 h photoperiod, but had only a marginal effect with 24 h photoperiod. In the second study, four CO2 concentrations of 500, 1000, 1500 and 2000 micromoles mol-1 were combined with two air temperature regimes of 16 and 20 degrees C under a 12 h photoperiod. At harvest, 35 days after transplanting, tuber and total dry weights of potatoes reached a maximum with 1000 micromoles mol-1 CO2 at 16 degrees C, but continued to increase up to 2000 micromoles mol-1 CO2 at 20 degrees C. Plant growth was greater at 20 degrees C than at 16 degrees C under all CO2 concentrations. At 16 degrees C specific leaf weight increased substantially with increasing CO2 concentrations as compared to 500 micromoles mol-1 CO2, but increased only slightly at 20 degrees C. This suggests a carbohydrate build-up in the leaves at 16 degrees C temperature that reduces plant response to increased CO2 concentrations. The data in the two studies indicate that a PPF of 34 mol m-2 d-1, 20 degrees C temperature, and 1000-2000 micromoles mol-1 CO2 produces optimal tuber yield in potatoes.  相似文献   
70.
Fluid transport models for fluxes of water vapor and CO2 have been developed for one crop of wheat and three crops of soybean grown in a closed plant growth chamber. Correspondence among these fluxes is discussed. Maximum fluxes of gases are provided for engineering design requirements of fluid recycling equipment in growth chambers. Furthermore, to investigate the feasibility of generalized crop models, dimensionless representations of water vapor fluxes are presented. The feasibility of such generalized models and the need for additional data are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号