首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2273篇
  免费   13篇
  国内免费   2篇
航空   1228篇
航天技术   831篇
综合类   13篇
航天   216篇
  2018年   25篇
  2017年   23篇
  2014年   24篇
  2013年   48篇
  2012年   28篇
  2011年   59篇
  2010年   47篇
  2009年   57篇
  2008年   126篇
  2007年   38篇
  2006年   32篇
  2005年   46篇
  2004年   69篇
  2003年   72篇
  2002年   37篇
  2001年   56篇
  2000年   49篇
  1999年   27篇
  1998年   75篇
  1997年   53篇
  1996年   62篇
  1995年   69篇
  1994年   85篇
  1993年   51篇
  1992年   69篇
  1991年   29篇
  1990年   33篇
  1989年   70篇
  1988年   24篇
  1987年   29篇
  1986年   51篇
  1985年   87篇
  1984年   54篇
  1983年   60篇
  1982年   57篇
  1981年   68篇
  1980年   34篇
  1979年   27篇
  1978年   25篇
  1977年   24篇
  1975年   24篇
  1974年   24篇
  1973年   24篇
  1972年   21篇
  1971年   31篇
  1970年   17篇
  1969年   25篇
  1968年   18篇
  1967年   20篇
  1966年   19篇
排序方式: 共有2288条查询结果,搜索用时 0 毫秒
921.
The purpose of the Galileo plasma wave investigation is to study plasma waves and radio emissions in the magnetosphere of Jupiter. The plasma wave instrument uses an electric dipole antenna to detect electric fields, and two search coil magnetic antennas to detect magnetic fields. The frequency range covered is 5 Hz to 5.6 MHz for electric fields and 5 Hz to 160 kHz for magnetic fields. Low time-resolution survey spectrums are provided by three on-board spectrum analyzers. In the normal mode of operation the frequency resolution is about 10%, and the time resolution for a complete set of electric and magnetic field measurements is 37.33 s. High time-resolution spectrums are provided by a wideband receiver. The wideband receiver provides waveform measurements over bandwidths of 1, 10, and 80 kHz. These measurements can be either transmitted to the ground in real time, or stored on the spacecraft tape recorder. On the ground the waveforms are Fourier transformed and displayed as frequency-time spectrogams. Compared to previous measurements at Jupiter this instrument has several new capabilities. These new capabilities include (1) both electric and magnetic field measurements to distinguish electrostatic and electromagnetic waves, (2) direction finding measurements to determine source locations, and (3) increased bandwidth for the wideband measurements.Deceased  相似文献   
922.
923.
Atmospheric photoelectrons have been observed well above the ionosphere of Mars by the ASPERA-3 ELS instrument on Mars Express. To systematically interpret these observations, field lines from two global MHD simulations were analyzed for connectivity to the dayside ionosphere (allowing photoelectron escape). It is found that there is a hollow cylinder behind the planet from 1–2 R M away from the Mars-Sun line that has a high probability of containing magnetic field lines with connectivity to the dayside ionosphere. These results are in complete agreement with the ELS statistics. It is concluded that the high-altitude photoelectrons are the result of direct magnetic connectivity to the dayside at the moment of the measurement, and no extra trapping or bouncing mechanisms are needed to explain the data.  相似文献   
924.
    
  相似文献   
925.
926.
The V-shock is identified as the primary mechanism for the acceleration of electrons responsible for the discrete aurora. A brief review of the evidence supporting the V-shock model is given, including the dynamics of auroral striations, anomalous motion of barium plasma at high altitudes and in-situ observations of large electric fields. The V-shock is a nonlinear, n = 0 ion cyclotron mode soliton, Doppler shifted to zero frequency. The V-shock is also shown to be a generalization of the one-dimensional double layer model, which is an ion acoustic soliton Doppler shifted to zero frequency. The essential difference between the double layer theory and the theory for the oblique, current-driven, laminar electrostatic shock is that the plasma dielectric constant in directions perpendicular to the magnetic field is c 2/V a /2 , where V a is the Alfvén velocity; but the plasma dielectric constant parallel to the magnetic field is unity. Otherwise, in the limit that the shock thickness perpendicular to the magnetic field is much larger than an ion gyroradius, the equations describing the double layer and the oblique shock are the same. The V-shock, while accounting for the acceleration of auroral electrons, requires an energy source and mechanism for generating large potential differences perpendicular to the magnetic field. An energy source is the earthward streaming protons coming from the distant magnetospheric tail. It is shown how these protons can be energized by the cross-tail electric field, which is the tailward extension of the polar cap dawn-to-dusk electric field. The local, large cross-field potential differences associated with the V-shock are seen to be the result of a non-linear, E × B drift turbulent cascade which transfers energy from small- to large-scale sizes. Energy at the smallest scale sizes comes from the kinetic energy in the ion cyclotron motion of the earthward streaming protons, which are unstable against the zero-frequency flute-mode instability. The review points out the gaps in our understanding of the mechanism of the diffuse aurora and the mechanism of the auroral substorm.  相似文献   
927.
928.
The discrete-time detection of a time-varying, additive signal in independent Laplace noise is considered. Previous efforts in this area have been restricted to the constant signal, and identically distributed noise case. Theoretical (closed form) expressions for the false alarm and detection probabilities are developed for both the Neyman-Pearson optimal detector and the classical matched filter detector. Comparisons between the two detectors are made which illustrate the effects of signal-to-noise power ratio and sample size for certain false alarm and detection probability constraints. In view of the fact that the optimal Laplace detector is not UMP, we also investigate the effect of signal amplitude mismatch  相似文献   
929.
"Artificial noise," or the connection of feedback paths around the the integrators, is shown to be an effective method of dealing with the problem of multiplier offsets in adaptive antennas. This probl which was analyzed by Compton [1] is particularly troubles when the covariance matrix is singular or nearly so. Like added real noise, the artificial noise improves the condition number of the underlying matrix. The artificial noise, however, avoids the obvious disadvantage of adding to the real noise level. As a result the output-signal-to-interference ratio is much less degraded.  相似文献   
930.
All weather tactical aircraft recovery and high sortie generation rates from forward, possibly battle damaged landing areas will reqire autonomous landing guidance systems which are independent of ground-based cooperative aids. A recently completed study has examined the operational requirements and assessed current and near term technology for an answer to this need. The Landing Systems Requirements/Synthesis Study has defined the Pilot/vehicle Interface and imaging sensor suite required, based on the concept of augmenting pilot forward vision with sensor imagery and guidance symbology on a HUD during low visibility landings. Image processing technology was also assessed for potential enhancement of the information presented to the pilot. This paper summarizes the final report of the Study, which is in publication.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号