全文获取类型
收费全文 | 2509篇 |
免费 | 9篇 |
国内免费 | 5篇 |
专业分类
航空 | 1318篇 |
航天技术 | 885篇 |
综合类 | 13篇 |
航天 | 307篇 |
出版年
2018年 | 33篇 |
2017年 | 26篇 |
2014年 | 33篇 |
2013年 | 63篇 |
2012年 | 42篇 |
2011年 | 84篇 |
2010年 | 60篇 |
2009年 | 74篇 |
2008年 | 142篇 |
2007年 | 48篇 |
2006年 | 40篇 |
2005年 | 60篇 |
2004年 | 76篇 |
2003年 | 81篇 |
2002年 | 43篇 |
2001年 | 60篇 |
2000年 | 50篇 |
1999年 | 30篇 |
1998年 | 77篇 |
1997年 | 55篇 |
1996年 | 64篇 |
1995年 | 70篇 |
1994年 | 86篇 |
1993年 | 51篇 |
1992年 | 72篇 |
1991年 | 31篇 |
1990年 | 33篇 |
1989年 | 71篇 |
1988年 | 27篇 |
1987年 | 32篇 |
1986年 | 56篇 |
1985年 | 90篇 |
1984年 | 54篇 |
1983年 | 63篇 |
1982年 | 57篇 |
1981年 | 69篇 |
1980年 | 37篇 |
1979年 | 28篇 |
1978年 | 26篇 |
1977年 | 24篇 |
1975年 | 25篇 |
1974年 | 24篇 |
1973年 | 26篇 |
1972年 | 21篇 |
1971年 | 31篇 |
1970年 | 17篇 |
1969年 | 25篇 |
1968年 | 18篇 |
1967年 | 20篇 |
1966年 | 19篇 |
排序方式: 共有2523条查询结果,搜索用时 0 毫秒
71.
E. E. Russell F. G. Brown R. A. Chandos W. C. Fincher L. F. Kubel A. A. Lacis L. D. Travis 《Space Science Reviews》1992,60(1-4):531-563
The Photopolarimeter/Radiometer (PPR) is a remote sensing instrument on the Galileo Orbiter designed to measure the degree of linear polarization and the intensity of reflected sunlight in ten spectral channels between 410 and 945 nm to determine the physical properties of Jovian clouds and aerosols, and to characterize the texture and microstructure of satellite surfaces. The PPR also measures thermal radiation in five spectral bands between 15 and 100 m to sense the upper tropospheric temperature structure. Two additional channels which measure spectrally integrated solar and solar plus thermal radiation are used to determine the planetary radiation budget components. The PPR photopolarimetric measurements utilize previously flown technology for high-precision polarimetry using a calcite Wollaston prism and two silicon photodiodes to enable simultaneous detection of the two orthogonal polarization components. The PPR radiometry measurements are made with a lithium tantalate pyroelectric detector utilizing a unique arrangement of radiometric stops and a scene/space chopper blade to enable a warm instrument to sense accurately the much colder scene temperatures. 相似文献
72.
73.
SWE,a comprehensive plasma instrument for the WIND spacecraft 总被引:1,自引:0,他引:1
K. W. Ogilvie D. J. Chornay R. J. Fritzenreiter F. Hunsaker J. Keller J. Lobell G. Miller J. D. Scudder E. C. Sittler Jr. R. B. Torbert D. Bodet G. Needell A. J. Lazarus J. T. Steinberg J. H. Tappan A. Mavretic E. Gergin 《Space Science Reviews》1995,71(1-4):55-77
The Solar Wind Experiment (SWE) on the WIND spacecraft is a comprehensive, integrated set of sensors which is designed to investigate outstanding problems in solar wind physics. It consists of two Faraday cup (FC) sensors; a vector electron and ion spectrometer (VEIS); a strahl sensor, which is especially configured to study the electron strahl close to the magnetic field direction; and an on-board calibration system. The energy/charge range of the Faraday cups is 150 V to 8 kV, and that of the VEIS is 7 V to 24.8 kV. The time resolution depends on the operational mode used, but can be of the order of a few seconds for 3-D measurements. Key parameters which broadly characterize the solar wind positive ion velocity distribution function will be made available rapidly from the GGS Central Data Handling Facility. 相似文献
74.
Timothy G. Hawarden Robert Crane Harley A. Thronson Jr. Alan J. Penny Anna H. Orlowska Thomas W. Bradshaw 《Space Science Reviews》1995,74(1-2):45-56
The designs of cold space telescopes, cryogenic and radiatively cooled, are similar in most elements and both benefit from orbits distant from the Earth. In particular such orbits allow the anti-sunward side of radiatively-cooled spacecraft to be used to provide large cooling radiators for the individual radiation shields. Designs incorporating these features have predictedT
tel near 20 K. The attainability of such temperatures is supported by limited practical experience (IRAS, COBE). Supplementary cooling systems (cryogens, mechanical coolers) can be advantageously combined with radiative cooling in hybrid designs to provide robustness against deterioration and yet lower temperatures for detectors, instruments, and even the whole telescope. The possibility of such major additional gains is illustrated by the Very Cold Telescope option under study forEdison, which should offerT
tel5 K for a little extra mechanical cooling capacity. 相似文献
75.
This study presents a methodology for specifying a neural controller for a system about which no a priori model information is available. The neural design presumes that a finite duration input/output (I/O) histogram on the system is available. The design procedure extracts from the histogram sufficient information to specify the neural feedback controller. The resultant controller will drive the system along a general output reference profile (unknown during the design). The resultant controller also exhibits the capability of disturbance rejection and the capacity to stabilize unstable plants 相似文献
76.
Louise M. Prockter Rosaly M. C. Lopes Bernd Giese Ralf Jaumann Ralph D. Lorenz Robert T. Pappalardo Gerald W. Patterson Peter C. Thomas Elizabeth P. Turtle Roland J. Wagner 《Space Science Reviews》2010,153(1-4):63-111
The surfaces of the Solar System’s icy satellites show an extraordinary variety of morphological features, which bear witness to exchange processes between the surface and subsurface. In this paper we review the characteristics of surface features on the moons of Jupiter, Saturn, Uranus and Neptune. Using data from spacecraft missions, we discuss the detailed morphology, size, and topography of cryovolcanic, tectonic, aeolian, fluvial, and impact features of both large moons and smaller satellites. 相似文献
77.
S. M. Krimigis D. G. Mitchell D. C. Hamilton S. Livi J. Dandouras S. Jaskulek T. P. Armstrong J. D. Boldt A. F. Cheng G. Gloeckler J. R. Hayes K. C. Hsieh W.-H. Ip E. P. Keath E. Kirsch N. Krupp L. J. Lanzerotti R. Lundgren B. H. Mauk R. W. McEntire E. C. Roelof C. E. Schlemm B. E. Tossman B. Wilken D. J. Williams 《Space Science Reviews》2004,114(1-4):233-329
The magnetospheric imaging instrument (MIMI) is a neutral and charged particle detection system on the Cassini orbiter spacecraft designed to perform both global imaging and in-situ measurements to study the overall configuration and dynamics of Saturn’s magnetosphere and its interactions with the solar wind, Saturn’s atmosphere, Titan, and the icy satellites. The processes responsible for Saturn’s aurora will be investigated; a search will be performed for substorms at Saturn; and the origins of magnetospheric hot plasmas will be determined. Further, the Jovian magnetosphere and Io torus will be imaged during Jupiter flyby. The investigative approach is twofold. (1) Perform remote sensing of the magnetospheric energetic (E > 7 keV) ion plasmas by detecting and imaging charge-exchange neutrals, created when magnetospheric ions capture electrons from ambient neutral gas. Such escaping neutrals were detected by the Voyager l spacecraft outside Saturn’s magnetosphere and can be used like photons to form images of the emitting regions, as has been demonstrated at Earth. (2) Determine through in-situ measurements the 3-D particle distribution functions including ion composition and charge states (E > 3 keV/e). The combination of in-situ measurements with global images, together with analysis and interpretation techniques that include direct “forward modeling’’ and deconvolution by tomography, is expected to yield a global assessment of magnetospheric structure and dynamics, including (a) magnetospheric ring currents and hot plasma populations, (b) magnetic field distortions, (c) electric field configuration, (d) particle injection boundaries associated with magnetic storms and substorms, and (e) the connection of the magnetosphere to ionospheric altitudes. Titan and its torus will stand out in energetic neutral images throughout the Cassini orbit, and thus serve as a continuous remote probe of ion flux variations near 20R
S (e.g., magnetopause crossings and substorm plasma injections). The Titan exosphere and its cometary interaction with magnetospheric plasmas will be imaged in detail on each flyby. The three principal sensors of MIMI consists of an ion and neutral camera (INCA), a charge–energy–mass-spectrometer (CHEMS) essentially identical to our instrument flown on the ISTP/Geotail spacecraft, and the low energy magnetospheric measurements system (LEMMS), an advanced design of one of our sensors flown on the Galileo spacecraft. The INCA head is a large geometry factor (G ∼ 2.4 cm2 sr) foil time-of-flight (TOF) camera that separately registers the incident direction of either energetic neutral atoms (ENA) or ion species (≥5∘ full width half maximum) over the range 7 keV/nuc < E < 3 MeV/nuc. CHEMS uses electrostatic deflection, TOF, and energy measurement to determine ion energy, charge state, mass, and 3-D anisotropy in the range 3 ≤ E ≤ 220 keV/e with good (∼0.05 cm2 sr) sensitivity. LEMMS is a two-ended telescope that measures ions in the range 0.03 ≤ E ≤ 18 MeV and electrons 0.015 ≤ E≤ 0.884 MeV in the forward direction (G ∼ 0.02 cm2 sr), while high energy electrons (0.1–5 MeV) and ions (1.6–160 MeV) are measured from the back direction (G ∼ 0.4 cm2 sr). The latter are relevant to inner magnetosphere studies of diffusion processes and satellite microsignatures as well as cosmic ray albedo neutron decay (CRAND). Our analyses of Voyager energetic neutral particle and Lyman-α measurements show that INCA will provide statistically significant global magnetospheric images from a distance of ∼60 R
S every 2–3 h (every ∼10 min from ∼20 R
S). Moreover, during Titan flybys, INCA will provide images of the interaction of the Titan exosphere with the Saturn magnetosphere every 1.5 min. Time resolution for charged particle measurements can be < 0.1 s, which is more than adequate for microsignature studies. Data obtained during Venus-2 flyby and Earth swingby in June and August 1999, respectively, and Jupiter flyby in December 2000 to January 2001 show that the instrument is performing well, has made important and heretofore unobtainable measurements in interplanetary space at Jupiter, and will likely obtain high-quality data throughout each orbit of the Cassini mission at Saturn. Sample data from each of the three sensors during the August 18 Earth swingby are shown, including the first ENA image of part of the ring current obtained by an instrument specifically designed for this purpose. Similarily, measurements in cis-Jovian space include the first detailed charge state determination of Iogenic ions and several ENA images of that planet’s magnetosphere.This revised version was published online in July 2005 with a corrected cover date. 相似文献
78.
Michael A. Dopita 《Space Science Reviews》1988,46(3-4):225-271
In the nine months since the explosion of SN 1987A, observations have been made throughout virtually the whole of the electromagnetic spectrum. This review attempts to summarize the observational results in the context of theoretical models, and presents what has been learnt about the physics of Type II supernova events from this extraordinary event. 相似文献
79.
Georg Fischer Donald A. Gurnett William S. Kurth Ferzan Akalin Philippe Zarka Ulyana A. Dyudina William M. Farrell Michael L. Kaiser 《Space Science Reviews》2008,137(1-4):271-285
The Cassini mission provides a great opportunity to enlarge our knowledge of atmospheric electricity at the gas giant Saturn. Following Voyager studies, the RPWS (Radio and Plasma Wave Science) instrument has measured again the so-called SEDs (Saturn Electrostatic Discharges) which are the radio signature of lightning flashes. Observations by Cassini/ISS (Imaging Science Subsystem) have shown cloud features in Saturn’s atmosphere whose occurrence, longitudinal drift rate, and brightness were strongly related to the SEDs. In this paper we will review the main physical parameters of the SEDs. Lightning does not only give us clues about the dynamics of the atmosphere, but also serves as a natural tool to investigate properties of Saturn’s ionosphere. We will also discuss other lightning related phenomena and compare Saturn lightning with terrestrial and Jovian lightning. 相似文献
80.
Leslie A. Young S. Alan Stern Harold A. Weaver Fran Bagenal Richard P. Binzel Bonnie Buratti Andrew F. Cheng Dale Cruikshank G. Randall Gladstone William M. Grundy David P. Hinson Mihaly Horanyi Donald E. Jennings Ivan R. Linscott David J. McComas William B. McKinnon Ralph McNutt Jeffery M. Moore Scott Murchie Catherine B. Olkin Carolyn C. Porco Harold Reitsema Dennis C. Reuter John R. Spencer David C. Slater Darrell Strobel Michael E. Summers G. Leonard Tyler 《Space Science Reviews》2008,140(1-4):93-127
The New Horizons spacecraft will achieve a wide range of measurement objectives at the Pluto system, including color and panchromatic maps, 1.25–2.50 micron spectral images for studying surface compositions, and measurements of Pluto’s atmosphere (temperatures, composition, hazes, and the escape rate). Additional measurement objectives include topography, surface temperatures, and the solar wind interaction. The fulfillment of these measurement objectives will broaden our understanding of the Pluto system, such as the origin of the Pluto system, the processes operating on the surface, the volatile transport cycle, and the energetics and chemistry of the atmosphere. The mission, payload, and strawman observing sequences have been designed to achieve the NASA-specified measurement objectives and maximize the science return. The planned observations at the Pluto system will extend our knowledge of other objects formed by giant impact (such as the Earth–moon), other objects formed in the outer solar system (such as comets and other icy dwarf planets), other bodies with surfaces in vapor-pressure equilibrium (such as Triton and Mars), and other bodies with N2:CH4 atmospheres (such as Titan, Triton, and the early Earth). 相似文献