首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3436篇
  免费   4篇
  国内免费   5篇
航空   1931篇
航天技术   835篇
综合类   13篇
航天   666篇
  2018年   187篇
  2017年   157篇
  2016年   51篇
  2015年   36篇
  2014年   25篇
  2013年   54篇
  2012年   71篇
  2011年   194篇
  2010年   179篇
  2009年   188篇
  2008年   221篇
  2007年   181篇
  2006年   33篇
  2005年   101篇
  2004年   86篇
  2003年   75篇
  2002年   37篇
  2001年   62篇
  2000年   51篇
  1999年   30篇
  1998年   75篇
  1997年   53篇
  1996年   63篇
  1995年   70篇
  1994年   85篇
  1993年   55篇
  1992年   71篇
  1991年   30篇
  1990年   33篇
  1989年   72篇
  1988年   24篇
  1987年   30篇
  1986年   51篇
  1985年   89篇
  1984年   56篇
  1983年   60篇
  1982年   57篇
  1981年   69篇
  1980年   34篇
  1979年   27篇
  1978年   25篇
  1977年   24篇
  1975年   24篇
  1974年   24篇
  1973年   25篇
  1972年   21篇
  1971年   31篇
  1969年   25篇
  1967年   21篇
  1966年   19篇
排序方式: 共有3445条查询结果,搜索用时 15 毫秒
241.
分析了2004年3月13日12:15到12:25UT期间TC-1和Cluster卫星簇的磁通门磁力计(FGM)和电子/电流试验仪(PEACE)的联合观测数据.在此期间,TC-1卫星位于日下点以南的磁层顶附近的磁鞘中,并在12:19UT左右观测到了一个典型的先正后负的磁鞘磁通量传输事件(FTE);而Cluster卫星簇位于北半球日侧高纬磁层项附近,并于12:23UT左右穿出磁层顶进入磁鞘,且在12:21 UT左右也观测到了一个典型的先正后负的磁层FTE.比较分析发现此两个FTE具有类似的磁场结构和等离子体特征,可能是同一个北向运动的FTE先后被TC-1和Cluster卫星观测到.利用Cluster 4颗卫星的多点同时观测数据,采用最小方向微分法和时空微分方法,推断Cluster卫星观测的这个FTE是尺度大小约为1.21Re的准二维结构,其运动方向为东北方向,与Cooling模型预测方向基本一致.利用Cooling模型的预测,推算了TC-1卫星在12:19UT观测的FTE的运动速度和尺度,进而得出随着通量管的极向运动,其速度和尺度均有所增加.  相似文献   
242.
It is often necessary for space-borne instrumentation to cope with substantial levels of shock acceleration both in the initial launch phase, as well as during entry, descent and landing in the case of planetary exploration. Current plans for a new generation of penetrator-based space missions will subject the associated on-board instrumentation to far greater levels of shock, and ways must therefore be found to either ruggedize or else protect any sensitive components during the impact phase. In this paper, we present an innovative method of shock protection that is suited for use in a number of planetary environments, based upon the temporary encapsulation of said components within a waxy solid which may then be sublimated to return the instrument back to its normal operation. We have tested this method experimentally using micromachined silicon suspensions under applied shock loads of up to 15,000g, and found that these were able to survive without incurring damage. Furthermore, quality factor measurements undertaken on these suspensions indicate that their mechanical performance remains unaffected by the encapsulation and subsequent sublimation process.  相似文献   
243.
This study presents several observations of the Cluster spacecraft on September 24, 2003 around 15:10 UT, which show necessary prerequisites and consequences for the formation of the so-called modified-two-stream instability (MTSI). Theoretical studies suggest that the plasma is MTSI unstable if (1) a relative drift of electrons and ions is present, which exceeds the Alfvèn speed, and (2) this relative drift or current is in the cross-field direction. As consequences of the formation of a MTSI one expects to observe (1) a field-aligned electron beam, (2) heating of the plasma, and (3) an enhancement in the B-wave spectrum at frequencies in the range of the lower-hybrid-frequency (LHF). In this study we use prime parameter data of the CIS and PEACE instruments onboard the Cluster spacecraft to verify the drift velocities of ions and electrons, FGM data to calculate the expected LHF and Alfvèn velocity, and the direction of the current. The B-wave spectrum is recorded by the STAFF instrument of Cluster. Finally, a field aligned beam of electrons is observed by 3D measurements of the IES instrument of the RAPID unit. Observations are verified using a theoretical model showing the build-up of a MTSI under the given circumstances.  相似文献   
244.
The monthly hourly medians of maximum electron density, NmF2, at two Pakistani ionospheric stations, Karachi and Islamabad, have been determined for solar minimum (1996) and solar maximum (2000) and compared with IRI predictions using the URSI coefficients. At night and pre-noon period the NmF2 values at both stations are almost equal during the 2 years. However, at post-noon the values at Karachi are considerably larger than those at Islamabad due to the equatorial or geomagnetic anomaly. Karachi (geomag. coord. 16.44°N, 139.08°E) lies near the region of the equatorial anomaly (+20 and −20 geomagnetic latitude), so most of the NmF2 values at Karachi are larger than those at Islamabad (geomag. coord. 24.46°N, 145.67°E). The maximum monthly values of NmF2 show a semi-annual variation at Karachi and Islamabad both during 1996 and 2000 as predicted by IRI.  相似文献   
245.
Thermodynamic conditions suggest that clathrates might exist on Mars. Despite observations which show that the dominant condensed phases on the surface of Mars are solid carbon dioxide and water ice, clathrates have been repeatedly proposed to play an important role in the distribution and total inventory of the planet’s volatiles. Here we review the potential consequences of the presence of clathrates on Mars. We investigate how clathrates could be a potential source for the claimed existence of atmospheric methane. In this context, plausible clathrate formation processes, either in the close subsurface or at the base of the cryosphere, are reviewed. Mechanisms that would allow for methane release into the atmosphere from an existing clathrate layer are addressed as well. We also discuss the proposed relationship between clathrate formation/dissociation cycles and how potential seasonal variations influence the atmospheric abundances of argon, krypton and xenon. Moreover, we examine several Martian geomorphologic features that could have been generated by the dissociation of extended subsurface clathrate layers. Finally we investigate the future in situ measurements, as well as the theoretical and experimental improvements that will be needed to better understand the influence of clathrates on the evolution of Mars and its atmosphere.  相似文献   
246.
An empirical model of the high-latitude boundary of the outer Earth’s radiation belt (ERB) has been presented, which is based on the measurement data of electron fluxes on the polar low-orbit CORONAS-Photon, Meteor-M1, and Meteor-M2 satellites. The boundary was determined by a sharp decrease to the background level of the flux of trapped electrons with energies of 100 or 200 keV in the polar part of the profile of the outer radiation belt. A numerical algorithm has been implemented to determine the time moment, when the fastest flux changes are recorded. The primary search was carried out, first, on 30 s averaged data, then repeated on data with a higher resolution. A functional dependence was obtained in order to approximate the obtained set of intersections of the boundary by elliptical curve. The empirical model constructed using the CORONAS-Photon measurement data in the epoch of anomalously low geomagnetic activity reflects the longitude structure of the high-latitude boundary of the outer radiation belt associated with the internal Earth’s magnetic field (MF), as well as its dependence on the universal time. Based on the data of intersections of the high-latitude boundary of the outer ERB (OERB) in the epoch of 2014–2016, the latitudinal shift of the boundary to the equator dependent on geomagnetic activity has been determined, as well as the nightside shift of the boundary due to the diurnal rotation of the Earth.  相似文献   
247.
In this paper, we analyze the illumination conditions, the thermal regime, and the possibility of deposits of volatile compounds existing in the vicinity region (NSR S5 region) near the southern pole of the Moon. It has been found that there are no permanently shadowed zones near the Scott crater and the NSR S5 region, though the temperature conditions allow the of compounds such as CH3OH, SO2, NH3, CO2, H2S, C2H4, and water to remain stable relative to evaporation for a long time (≥1 Gyr). It has been also shown that compounds like CO and CH4 cannot stably exist in these regions.  相似文献   
248.
The dynamics of the rotational motion of a satellite moving in the central Newtonian field of force over a circular orbit under the effect of gravitational and active damping torques, which depend on the satellite angular velocity projections, has been investigated. The paper proposes a method of determining all equilibrium positions (equilibrium orientations) of a satellite in the orbital coordinate system for specified values of damping coefficients and principal central moments of inertia. The conditions of their existence have been obtained. For a zero equilibrium position where the axes of the satellite-centered coordinate system coincide with the axes of the orbital coordinate system, the necessary and sufficient conditions for asymptotic stability are obtained using the Routh–Hurwitz criterion. A detailed analysis of the regions where the conditions of the asymptotic stability of a zero equilibrium position are fulfilled have been obtained depending on three dimensionless parameters of the problem, and the numerical study of the process of attenuation of satellite’s spatial oscillations for various damping coefficients has been carried out. It has been shown that there is a wide range of damping parameters from which, by choosing the necessary values, one can provide the asymptotic stability of satellite’s zero equilibrium position in the orbital coordinate system.  相似文献   
249.
In July 2016, NASA’s Juno mission becomes the first spacecraft to enter polar orbit of Jupiter and venture deep into unexplored polar territories of the magnetosphere. Focusing on these polar regions, we review current understanding of the structure and dynamics of the magnetosphere and summarize the outstanding issues. The Juno mission profile involves (a) a several-week approach from the dawn side of Jupiter’s magnetosphere, with an orbit-insertion maneuver on July 6, 2016; (b) a 107-day capture orbit, also on the dawn flank; and (c) a series of thirty 11-day science orbits with the spacecraft flying over Jupiter’s poles and ducking under the radiation belts. We show how Juno’s view of the magnetosphere evolves over the year of science orbits. The Juno spacecraft carries a range of instruments that take particles and fields measurements, remote sensing observations of auroral emissions at UV, visible, IR and radio wavelengths, and detect microwave emission from Jupiter’s radiation belts. We summarize how these Juno measurements address issues of auroral processes, microphysical plasma physics, ionosphere-magnetosphere and satellite-magnetosphere coupling, sources and sinks of plasma, the radiation belts, and the dynamics of the outer magnetosphere. To reach Jupiter, the Juno spacecraft passed close to the Earth on October 9, 2013, gaining the necessary energy to get to Jupiter. The Earth flyby provided an opportunity to test Juno’s instrumentation as well as take scientific data in the terrestrial magnetosphere, in conjunction with ground-based and Earth-orbiting assets.  相似文献   
250.
The cross-disciplinary field of astrochemistry exists to understand the formation, destruction, and survival of molecules in astrophysical environments. Molecules in space are synthesized via a large variety of gas-phase reactions, and reactions on dust-grain surfaces, where the surface acts as a catalyst. A broad consensus has been reached in the astrochemistry community on how to suitably treat gas-phase processes in models, and also on how to present the necessary reaction data in databases; however, no such consensus has yet been reached for grain-surface processes. A team of \({\sim}25\) experts covering observational, laboratory and theoretical (astro)chemistry met in summer of 2014 at the Lorentz Center in Leiden with the aim to provide solutions for this problem and to review the current state-of-the-art of grain surface models, both in terms of technical implementation into models as well as the most up-to-date information available from experiments and chemical computations. This review builds on the results of this workshop and gives an outlook for future directions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号