首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2276篇
  免费   4篇
  国内免费   3篇
航空   1227篇
航天技术   827篇
综合类   13篇
航天   216篇
  2018年   25篇
  2017年   22篇
  2014年   24篇
  2013年   47篇
  2012年   28篇
  2011年   59篇
  2010年   47篇
  2009年   57篇
  2008年   126篇
  2007年   38篇
  2006年   32篇
  2005年   46篇
  2004年   69篇
  2003年   72篇
  2002年   37篇
  2001年   55篇
  2000年   49篇
  1999年   27篇
  1998年   75篇
  1997年   53篇
  1996年   62篇
  1995年   69篇
  1994年   85篇
  1993年   51篇
  1992年   69篇
  1991年   29篇
  1990年   33篇
  1989年   70篇
  1988年   24篇
  1987年   29篇
  1986年   50篇
  1985年   87篇
  1984年   54篇
  1983年   60篇
  1982年   56篇
  1981年   68篇
  1980年   34篇
  1979年   27篇
  1978年   25篇
  1977年   24篇
  1975年   24篇
  1974年   24篇
  1973年   24篇
  1972年   21篇
  1971年   31篇
  1970年   17篇
  1969年   25篇
  1968年   18篇
  1967年   20篇
  1966年   19篇
排序方式: 共有2283条查询结果,搜索用时 234 毫秒
721.
Wave-particle effects are implicit in most models of radial diffusion and energization of Van Allen belt particles; they were explicitly used in the wave turbulence model for trapped particle precipitation and trapped flux limitations by Kennel and Petschek, Cornwall and by many others. Liemohn used wave-particle interactions to work out a theory of path-integrated whistler amplification process to explain the lack of large per-hop attenuation of multiple-hop LF whistlers.Others have now used wave-particle interactions to construct theories of ELF and VLF chorus. In the present paper we shall review the observations and some of the pertinent theoretical interpretations of wave-particle effects as they relate to substorm and storm-time phenomena. If substorms develop as a result of magnetic merging, then it seems clear that wave-particle interactions in the dissipative or so-called diffusion region of the reconnection zone may be of great importance. The plasma sheet thinning and flow towards the Earth lead inevitably to the development of particle distribution functions that contain free energy in a pitch-angle anisotropy. Such free energy can be released via plasma wave instabilities. The subsequent wave-particle interactions can result in both strong and weak diffusion of particles into loss cones with consequent precipitation fluxes into the auroral zone. Ring current proton spectra also should be unstable against various plasma instabilities with consequent ring current decay and precipitations. Wave-particle interactions must play some important roles in auroral arcs, electrojets and other phenomena related to substorms. These aspects of wave-Paticle interaction will be covered  相似文献   
722.
723.
The utility of Barker-type phase-reversal codes is extended by the use of sidelobe suppression techniques that can be easily implemented in digital form. It is shown that sidelobe suppression techniques can be found where the tapped delay line used to reduce the sidelobes has only a few distinct tap weights, in which case the complexity of the digital processor is greatly reduced. An example is given where the technique is applied to Barker codes with positive sidelobes, specifically, the 13-element Barker code. If higher pulse compression factors are desired than are obtainable with Barker codes, multistage Barker codes may be used. The sidelobes then may be suppressed for any one or all of the different coding stages.  相似文献   
724.
This paper discusses the concept, design, and design verification of the White Sands Range and Range-Rate System. Development of the system has been completed only through the design phase. The system is designed to meet requirements for high-accuracy midcourse tracking under severe target dynamics at the White Sands Missile Range. It is a multistatic Doppler and range tracker which operates at X band and incorporates transmitter, transponder, receiver, and baseline subsystems. The transmitter includes specially designed digital circuitry to synthesize test signals for target simulation during checkout of the system. The transponder signal is processed by a receiver which has been established theoretically to be the optimum realizable processor of continuous tracking data. The receiver incorporates specially designed carrier acquisition circuitry and digital VCO, and directly provides digital Doppler and tone phase data to facilitate real-time processing. The system utilizes data from other tracking systems at the Range for spatial acquisition, for aiding carrier acquisition in the receiver, and for resolving range ambiguities.  相似文献   
725.
The computed performance of four different types of glide slope transmitting arrays sited over idealized ground planes consisting of one-dimensional perfectly conducting strips of various lengths in free space is presented. The idealized ground plane approximates the practical case of a site consisting of an expanse of relatively flat ground plane ending in a precipitous dropoff or in rough diffusely reflecting terrain. The computed results show several phenomena which have repeatedly been observed.  相似文献   
726.
In this review paper, the physical properties of the Saturnian and Uranian rings as derived from ground-based observations are first discussed. Focus is then shifted to the study of the orbital dynamics of the ring particles. Numerical simulations of the evolutionary history of a system of colliding particles in differential rotation together with theoretical modelling of the inelastic collision processes are surveyed. In anticipation of the information returned from in situ measurements by space probes, interactions of the planetary rings with the interplanetary meteoroids and planetary magnetospheres are briefly considered. Finally, models of planetary ring origin are examined. In this connection, some recent work on the satellite resonant perturbation effects on the ring structure are also touched upon.  相似文献   
727.
The objective of the high-altitude supersonic target (HAST) radar augmentation system is to simulate the radar cross section (RCS) of a real target. The system is, therefore, of the active transponder type with various radiating antennas simulating the dominant scattering centers on the real target. We develop a system model, which when combined with the measured RCS of the HAST vehicle, simulates the RCS of the real target. Comparisons with measurements illustrating the success of the simulation program are given.  相似文献   
728.
729.
The early development of Mars is of enormous interest, not just in its own right, but also because it provides unique insights into the earliest history of the Earth, a planet whose origins have been all but obliterated. Mars is not as depleted in moderately volatile elements as are other terrestrial planets. Judging by the data for Martian meteorites it has Rb/Sr 0.07 and K/U 19,000, both of which are roughly twice as high as the values for the Earth. The mantle of Mars is also twice as rich in Fe as the mantle of the Earth, the Martian core being small (20% by mass). This is thought to be because conditions were more oxidizing during core formation. For the same reason a number of elements that are moderately siderophile on Earth such as P, Mn, Cr and W, are more lithophile on Mars. The very different apparent behavior of high field strength (HFS) elements in Martian magmas compared to terrestrial basalts and eucrites may be related to this higher phosphorus content. The highly siderophile element abundance patterns have been interpreted as reflecting strong partitioning during core formation in a magma ocean environment with little if any late veneer. Oxygen isotope data provide evidence for the relative proportions of chondritic components that were accreted to form Mars. However, the amount of volatile element depletion predicted from these models does not match that observed — Mars would be expected to be more depleted in volatiles than the Earth. The easiest way to reconcile these data is for the Earth to have lost a fraction of its moderately volatile elements during late accretionary events, such as giant impacts. This might also explain the non-chondritic Si/Mg ratio of the silicate portion of the Earth. The lower density of Mars is consistent with this interpretation, as are isotopic data. 87Rb-87Sr, 129I-129Xe, 146Sm-142Nd, 182Hf-182W, 187Re-187Os, 235U-207Pb and 238U-206Pb isotopic data for Martian meteorites all provide evidence that Mars accreted rapidly and at an early stage differentiated into atmosphere, mantle and core. Variations in heavy xenon isotopes have proved complicated to interpret in terms of 244Pu decay and timing because of fractionation thought to be caused by hydrodynamic escape. There are, as yet, no resolvable isotopic heterogeneities identified in Martian meteorites resulting from 92Nb decay to 92Zr, consistent with the paucity of perovskite in the martian interior and its probable absence from any Martian magma ocean. Similarly the longer-lived 176Lu-176Hf system also preserves little record of early differentiation. In contrast W isotope data, Ba/W and time-integrated Re/Os ratios of Martian meteorites provide powerful evidence that the mantle retains remarkably early heterogeneities that are vestiges of core metal segregation processes that occurred within the first 20 Myr of the Solar System. Despite this evidence for rapid accretion and differentiation, there is no evidence that Mars grew more quickly than the Earth at an equivalent size. Mars appears to have just stopped growing earlier because it did not undergo late stage (>20 Myr), impacts on the scale of the Moon-forming Giant Impact that affected the Earth.  相似文献   
730.
The Mars Program Plan includes an integrated and coordinated set of future candidate missions and investigations that meet fundamental science objectives of NASA and the Mars Exploration Program (MEP). At the time this paper was written, these possible future missions are planned in a manner consistent with a projected budget profile for the Mars Program in the next decade (2007-2016). As with all future missions, the funding profile depends on a number of factors that include the exact cost of each mission as well as potential changes to the overall NASA budget. In the current version of the Mars Program Plan, the Astrobiology Field Laboratory (AFL) exists as a candidate project to determine whether there were (or are) habitable zones and life, and how the development of these zones may be related to the overall evolution of the planet. The AFL concept is a surface exploration mission equipped with a major in situ laboratory capable of making significant advancements toward the Mars Program's life-related scientific goals and the overarching Vision for Space Exploration. We have developed several concepts for the AFL that fit within known budget and engineering constraints projected for the 2016 and 2018 Mars mission launch opportunities. The AFL mission architecture proposed here assumes maximum heritage from the 2009 Mars Science Laboratory (MSL). Candidate payload elements for this concept were identified from a set of recommendations put forth by the Astrobiology Field Laboratory Science Steering Group (AFL SSG) in 2004, for the express purpose of identifying overall rover mass and power requirements for such a mission. The conceptual payload includes a Precision Sample Handling and Processing System that would replace and augment the functionality and capabilities provided by the Sample Acquisition Sample Processing and Handling system that is currently part of the 2009 MSL platform.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号