首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3124篇
  免费   13篇
  国内免费   2篇
航空   1524篇
航天技术   1146篇
综合类   15篇
航天   454篇
  2021年   30篇
  2018年   53篇
  2017年   40篇
  2016年   26篇
  2014年   53篇
  2013年   84篇
  2012年   68篇
  2011年   96篇
  2010年   77篇
  2009年   111篇
  2008年   180篇
  2007年   55篇
  2006年   51篇
  2005年   76篇
  2004年   85篇
  2003年   97篇
  2002年   55篇
  2001年   89篇
  2000年   60篇
  1999年   39篇
  1998年   101篇
  1997年   58篇
  1996年   80篇
  1995年   85篇
  1994年   109篇
  1993年   58篇
  1992年   85篇
  1991年   33篇
  1990年   34篇
  1989年   80篇
  1988年   30篇
  1987年   38篇
  1986年   54篇
  1985年   111篇
  1984年   70篇
  1983年   70篇
  1982年   67篇
  1981年   85篇
  1980年   40篇
  1979年   30篇
  1978年   29篇
  1977年   26篇
  1975年   30篇
  1974年   31篇
  1973年   26篇
  1972年   29篇
  1971年   32篇
  1969年   27篇
  1967年   25篇
  1966年   24篇
排序方式: 共有3139条查询结果,搜索用时 0 毫秒
181.
An absorption feature at 3.4 micrometers has been observed in various lines-of-sight through the diffuse interstellar medium. Its position and width lead to an identification with the C-H stretching mode of solid organic material. A possible mechanism for the production of organic solids in the interstellar medium is UV photoprocessing of icy mantles which accrete on dust grains in dense clouds. Furthermore, thermally induced reactions involving formaldehyde molecules in the mantles could be an important source of organics. Laboratory simulation of these processes shows that a large variety of oxygen- and nitrogen-rich species may be produced. It is shown that the occurrence of periodic transient heating events plays an important role in the production of organic material in the ice mantles. Finally, it is pointed out how future missions like the Infrared Space Observatory (ISO) as well as analysis of comet material by Rosetta may be able to clarify the nature and evolution of interstellar organics.  相似文献   
182.
The major purpose of these experiments were to investigate growth of potato storage organs and starch synthesis in minitubers at slow horizontal clinorotation (2 rpm), which partly mimics microgravity, and a secondary goal was to study the activity and localization of phosphorylase (EC 2.4.1.1) in storage parenchyma under these conditions. Miniplants of Solanum tuberosum L. (cv Adreta) were grown in culture for 30 days for both the vertical control and the horizontal clinorotation. During long-term clinorotation, an acceleration of minituber formation, and an increase of amyloplast number and size in storage parenchyma cells, as well as increased starch content, was observed in the minitubers. The differences among cytochemical reaction intensity, activity of phosphorylase, and carbohydrate content in storage parenchyma cells of minitubers grown in a horizontal clinostat were established by electron-cytochemical and biochemical methods. It is shown that high phosphorylase activity is correlated with increased starch content during extended clinorotation. The results demonstrate the increase in carbohydrate metabolism and possible accelerated growth of storage organs under the influence of microgravity, as mimicked by clinorotation; therefore, clinorotation can be used as a basis for future studies on mechanisms of starch synthesis under microgravity.  相似文献   
183.
The multiparametric dosimetry system that we are developing for medical radiological defense applications could be adapted for spaceflight environments. The system complements the internationally accepted personnel dosimeters and cytogenetic analysis of chromosome aberrations, considered the best means of documenting radiation doses for health records. Our system consists of a portable hematology analyzer, molecular biodosimetry using nucleic acid and antigen-based diagnostic equipment, and a dose assessment management software application. A dry-capillary tube reagent-based centrifuge blood cell counter (QBC Autoread Plus, Becton [correction of Beckon] Dickinson Bioscience) measures peripheral blood lymphocytes and monocytes, which could determine radiation dose based on the kinetics of blood cell depletion. Molecular biomarkers for ionizing radiation exposure (gene expression changes, blood proteins) can be measured in real time using such diagnostic detection technologies as miniaturized nucleic acid sequences and antigen-based biosensors, but they require validation of dose-dependent targets and development of optimized protocols and analysis systems. The Biodosimetry Assessment Tool, a software application, calculates radiation dose based on a patient's physical signs and symptoms and blood cell count analysis. It also annotates location of personnel dosimeters, displays a summary of a patient's dosimetric information to healthcare professionals, and archives the data for further use. These radiation assessment diagnostic technologies can have dual-use applications supporting general medical-related care.  相似文献   
184.
An ultracapacitor system for an electric vehicle has been implemented. The device allows higher accelerations and decelerations of the vehicle with minimal loss of energy and minimal degradation of the main battery pack. The system uses a DC-DC power converter, which is connected between the ultracapacitor and the main battery pack. The design has been optimized in weight and size, by using water-cooled heat sinks for the power converter, and an aluminum coil with air core for the smoothing inductance. The ratings of the ultracapacitor are: nominal voltage: 300 Vdc; nominal current: 200 Adc; capacitance: 20 Farads. The amount of energy stored allows us to have 40 kW of power during 20 seconds, which is enough to accelerate the vehicle without the help of the traction batteries. The vehicle uses a brushless DC motor with a nominal power of 32 kW and a peak power of 53 kW. A control system based on a Digital Signal Processor (DSP) manipulates all the aforementioned variables and controls the Pulse Width Modulation (PWM) switching pattern of the converter transistors. The car used for the implementation of this system is a Chevrolet LUV truck.  相似文献   
185.
186.
A ceramic material having a large dielectric constant at 77 K, ε=8000-12000, has been developed for capacitive energy storage at this temperature. A large matrix of multilayer ceramic capacitors were fabricated using conventional tape-casting methods to optimize the dielectric breakdown strength at 77 K, and measured energy storage values on these capacitors range up to 6 J/cm3 at 77 K. An unfused bank of these capacitors was voltage-cycled 105 times at 77 K without failure, and the heating effects during cycling were immeasurably small (i.e., nitrogen boiloff was monitored). An electrocaloric effect on discharge (ΔT~1 K) contributes to the thermal stability. Measurements of the frequency dependence of the dielectric properties of the ceramic at 77 K indicate a fundamental limit of about 8 μs for the switching repetition rate. Improved capacitor-manufacturing methods are discussed which can increase the energy density to the 20-30 J/cm3 range  相似文献   
187.
An update of a phased array radar project with the experimental system ELRA (electronic steerable radar) is given with respect to the extended and improved possibilities for performing measurements and evaluations for different types of radar operation. The variability of waveforms for solid-state transmitters is described. Flexible control of multifunction operation with various search and localization tasks is achieved with a network of microcomputers. Different means of signal processing are used for target detection and estimation. The active receiving array is divided into subarrays, and offers digital beamforming for pattern shaping and adaptive jammer suppression. Experimental results are presented  相似文献   
188.
189.
The transmission of integrity information using a signal format compatible with the Global Positioning System (GPS) and relayed through a geostationary satellite repeater, which will be critical in achieving high integrity and availability of global navigation by satellite is discussed. The inclusion of navigation repeaters designed to fulfil this function, the next generation of INMARSAT spacecraft, INMARSAT-3 is examined. The global navigation satellite system (GNSS) integrity channel (GIC) will employ pseudorandom codes in the same family as, but distinct from, the codes reserved by GPS. The data format of the basic integrity channel is designed to convey user range error information for 24 to 40 satellites. A closed-loop timing compensation technique will be used at the uplinking Earth station, to make the signal's clock and carrier Doppler variations identical to those that would result from an onboard signal source. Therefore, the INMARSAT-3 satellites will increase the number of useful navigation satellites available to any user, and can also function as sources of precise timing. There is also a possibility that wide area differential corrections can be carried on the same signal  相似文献   
190.
Four versions of a steady-state quiet D-region model are presented. They differ from each other as a result of latitudinal differences in total neutral particle concentrations, nitric oxide concentrations and cosmic ray ionization rates. The total ion concentration profiles of all four versions have minima near 70 km which range from about 108 m?3 at high latitudes to 3.5 × 107 m?3 at equatorial latitudes for a solar zenith angle of 60°. Neutral density differences among the four cases result in important vertical shifts for the respective D-region profiles relative to one another. A “C-layer” is evident for the high and mild-latitude models at large solar zenith angles. The altitude where the negative ion/electron concentrations ratio is unity varies from about 63 to 67 km. The computed results are compared briefly with the extensive data base in the literature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号