首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3124篇
  免费   13篇
  国内免费   2篇
航空   1524篇
航天技术   1146篇
综合类   15篇
航天   454篇
  2021年   30篇
  2018年   53篇
  2017年   40篇
  2016年   26篇
  2014年   53篇
  2013年   84篇
  2012年   68篇
  2011年   96篇
  2010年   77篇
  2009年   111篇
  2008年   180篇
  2007年   55篇
  2006年   51篇
  2005年   76篇
  2004年   85篇
  2003年   97篇
  2002年   55篇
  2001年   89篇
  2000年   60篇
  1999年   39篇
  1998年   101篇
  1997年   58篇
  1996年   80篇
  1995年   85篇
  1994年   109篇
  1993年   58篇
  1992年   85篇
  1991年   33篇
  1990年   34篇
  1989年   80篇
  1988年   30篇
  1987年   38篇
  1986年   54篇
  1985年   111篇
  1984年   70篇
  1983年   70篇
  1982年   67篇
  1981年   85篇
  1980年   40篇
  1979年   30篇
  1978年   29篇
  1977年   26篇
  1975年   30篇
  1974年   31篇
  1973年   26篇
  1972年   29篇
  1971年   32篇
  1969年   27篇
  1967年   25篇
  1966年   24篇
排序方式: 共有3139条查询结果,搜索用时 15 毫秒
911.
High voltage has been used for electrical power system generation, transmission, and distribution for over 75 years and manufacturers have been designing x-rays, radios/television transmitters and receivers for many years with excellent success. High voltage usage in aerospace equipment initiated during World War II with the advent of high power communications and radar for airplanes. About 20 years ago the first high voltage components were built for spacecraft systems. This article is to provide some insight into the status of high voltage for aerospace equipment and the differences between terrestial and aerospace system functions and the attendant problems. What are the basic differences between terrestial/commercial and aerospace equipment? The aerospace environment is defined as that significantly above the Earth's surface: From 5000 feet altitude to deep space. The basic differences are the constraints placed on the user vehicle (airplane, missile, or spacecraft). Constraints include: Atmospheric pressure, temperature, lifting capability, electronic requirements, and volume. Early airplanes needed only radios and mechanical pressurization instruments. Today's sophisticted airplanes require transmitters, receivers, controls, displays, and in the military case, special electronics. The addition of electronic devices has increased the electrical power demand from a few watts (for early aircraft) to well over one megawatt for special applications. There is the need for compact packaging to reduce weight and volume. Spacecraft with booster limitations are ever more restrictive of weight and volume then airplanes while they must maintain complete electrical system integrity for mission durations of several months to years.  相似文献   
912.
Measurements of the electric field in the ionosphere and the equatorial plane during the pre-onset and actives phases of a substorm (March 4, 1979) are compared. Correlations and disagrements between the measurements are considered. The preliminary conclusion is reached that the model of electrojet polarisation proposed by CORONITI and KENNEL (1972) could possibly explain part of our observations.  相似文献   
913.
The current status and future potential of Maglev systems is reviewed. Modes of noncontact suspension and propulsion are described, and prototype systems and design concepts are indicated. A number of existing systems are described in more detail  相似文献   
914.
Two crop growth experiments in the soil-based closed ecological facility, Laboratory Biosphere, were conducted from 2003 to 2004 with candidate space life support crops. Apogee wheat (Utah State University variety) was grown, planted at two densities, 400 and 800 seeds m-2. The lighting regime for the wheat crop was 16 h of light-8 h dark at a total light intensity of around 840 micromoles m-2 s-1 and 48.4 mol m-2 d-1 over 84 days. Average biomass was 1395 g m-2, 16.0 g m-2 d-1 and average seed production was 689 g m-2 and 7.9 g m-2 d-1. The less densely planted side was more productive than the denser planting, with 1634 g m-2 and 18.8 g m-2 d-1 of biomass vs. 1156 g m-2 and 13.3 g m-2 d-1; and a seed harvest of 812.3 g m-2 and 9.3 g m-2 d-1 vs. 566.5 g m-2 and 6.5 g m-2 d-1. Harvest index was 0.49 for the wheat crop. The experiment with sweet potato used TU-82-155 a compact variety developed at Tuskegee University. Light during the sweet potato experiment, on a 18 h on/6 h dark cycle, totaled 5568 total moles of light per square meter in 126 days for the sweet potatoes, or an average of 44.2 mol m-2 d-1. Temperature regime was 28 +/- 3 degrees C day/22 +/- 4 degrees C night. Sweet potato tuber yield was 39.7 kg wet weight, or an average of 7.4 kg m-2, and 7.7 kg dry weight of tubers since dry weight was about 18.6% wet weight. Average per day production was 58.7 g m-2 d-1 wet weight and 11.3 g m-2 d-1. For the wheat, average light efficiency was 0.34 g biomass per mole, and 0.17 g seed per mole. The best area of wheat had an efficiency of light utilization of 0.51 g biomass per mole and 0.22 g seed per mole. For the sweet potato crop, light efficiency per tuber wet weight was 1.33 g mol-1 and 0.34 g dry weight of tuber per mole of light. The best area of tuber production had 1.77 g mol-1 wet weight and 0.34 g mol-1 of light dry weight. The Laboratory Biosphere experiment's light efficiency was somewhat higher than the USU field results but somewhat below greenhouse trials at comparable light levels, and the best portion of the crop at 0.22 g mol-1 was in-between those values. Sweet potato production was overall close to 50% higher than trials using hydroponic methods with TU-82-155 at NASA JSC. Compared to projected yields for the Mars on Earth life support system, these wheat yields were about 15% higher, and the sweet potato yields averaged over 80% higher.  相似文献   
915.
Since 1958, daily temperature-height profiles have been measured up to 35–40 km at Berlin by means of radiosondes. An attempt is made here to describe these profiles as a function of the noon solar zenith angle, χ. It is shown that the basic annual variation of the measured profiles, T(h), can be presented as T(h) = To(h) cosn(h)χ. The subsolar temperature, To(h), and exponent, n(h), have been determined empirically from the summer and autumn data when the radiative balance is obviously dominant. Neither term depends on the solar cycle. Warmings in winter and coolings in spring are treated as disturbances in the annual variation, due to dynamics, and are described separately as ± ΔT(h).  相似文献   
916.
Estimates of radiation doses resulting from possible HZE (high energy heavy ion) components of solar particle events (SPEs) are presented for crews of manned interplanetary missions. The calculations assume a model spectrum obtained by folding measured solar flare HZE particle abundances with the measured energy spectra of SPE alpha particles. These hypothetical spectra are then transported through aluminum spacecraft shielding. The results, presented as estimates of absorbed dose and dose equivalent, indicate that HZE components by themselves are not a major concern for crew protection but should be included in any overall risk assessment. The predictions are found to be sensitive to the assumed spectral hardness parameters.  相似文献   
917.
The European Space Agency has recently initiated a study of the human responses, limits and needs with regard to the stress environments of interplanetary and planetary missions. Emphasis has been laid on human health and performance care as well as advanced life support developments including bioregenerative life support systems and environmental monitoring. The overall study goals were as follows: (i) to define reference scenarios for a European participation in human exploration and to estimate their influence on the life sciences and life support requirements; (ii) for selected mission scenarios, to critically assess the limiting factors for human health, wellbeing, and performance and to recommend relevant countermeasures; (iii) for selected mission scenarios, to critically assess the potential of advanced life support developments and to propose a European strategy including terrestrial applications; (iv) to critically assess the feasibility of existing facilities and technologies on ground and in space as testbeds in preparation for human exploratory missions and to develop a test plan for ground and space campaigns; (v) to develop a roadmap for a future European strategy towards human exploratory missions, including preparatory activities and terrestrial applications and benefits. This paper covers the part of the HUMEX study dealing with lunar missions. A lunar base at the south pole where long-time sunlight and potential water ice deposits could be assumed was selected as the Moon reference scenario. The impact on human health, performance and well being has been investigated from the view point of the effects of microgravity (during space travel), reduced gravity (on the Moon) and abrupt gravity changes (during launch and landing), of the effects of cosmic radiation including solar particle events, of psychological issues as well as general health care. Countermeasures as well as necessary research using ground-based test beds and/or the International Space Station have been defined. Likewise advanced life support systems with a high degree of autonomy and regenerative capacity and synergy effects were considered where bioregenerative life support systems and biodiagnostic systems become essential. Finally, a European strategy leading to a potential European participation in future human exploratory missions has been recommended.  相似文献   
918.
The Long Duration Exposure Facility (LDEF), which encompassed 57 experiments with more than 10,000 test specimens, spent 69 months in low Earth orbit (LEO) before it was retrieved by the Space Shuttle in January 1990. Hundreds of LDEF investigators, after studying for over two years these retrieved test specimens and the onboard recorded data and systems hardware, have generated a unique first-hand view of the long term synergistic effects that the LEO environment can have on spacecraft. These studies have also contributed significantly toward more accurate models of the LEO radiation, meteoroid, manmade debris and atomic oxygen environments. This paper provides an overview of some of the many LDEF observations and the implications these can have on future spacecraft such as Space Station Freedom.  相似文献   
919.
CH4, CO, and CO2 are all potential one-carbon molecular repositories in primitive icy objects. These molecules are all found in the Comet Halley coma, and are probable but, (except for CH4 detected on Triton and Pluto) undetected subsurface constituents in icy outer solar system objects. We have investigated the effects of charged particle irradiation by cold plasma discharge upon surfaces of H2O:CH4 clathrate having a 200:1 ratio, as well as upon ices composed of H2O plus C2H6 or C2H2 (sometimes plus NH3) which are also plausible constituents. These materials color and darken noticeably after a dose 10(9) - 10(10) erg cm-2, which is deposited rapidly (< or = 10(4) yr.) in solar system environments. The chromophore is a yellowish to tan organic material (a tholin) which we have studied by UV-VIS reflection and transmission, and IR transmission spectroscopy. Its yield, -1 C keV-1, implies substantial production of organic solids by the action of cosmic rays and radionuclides in cometary crusts and interiors, as well as rapid production in satellite surfaces. This material shows alkane bands which Chyba and Sagan have shown to well match the Halley infrared emission spectrum near 3.4 microns, and also bands due to aldehyde, alcohol and perhaps alkene/aromatic functional groups. We compare the IR spectral properties of these tholins with the spectra of others produced by irradiation of gases and ices containing simple hydrocarbons.  相似文献   
920.
Shock waves, as evidenced by type II radio bursts, often accompany flares and coronal mass ejection transients. At present, the density enhancements observed by coronagraphs are believed by some to be ejected matter from the low corona, and by others to be the compressed material behind a shock front. If the former is correct, one would expect in some cases to see a density enhancement, associated with the compression region of the shock, some distance ahead of the transient ejecta. Such a density enhancement has not been previously reported.The coronal transient of 1980 June 29 (0233 UT) was observed with the High Altitude Observatory's Coronagraph/Polarimeter aboard SMM. This flare-associated coronal transient event was well observed with the Culgoora Radioheliograph, including a well-developed type II burst. Visible on the coronagraph images is a faint circular arc moving out well ahead of the transient loops. This arc is moving at more than 900 km s?1 while the transient itself is moving at a speed of about 600 km s?1. Both the arc and transient appear to have originated either prior to the X-ray flare or at some height above the flare at the time of the flare. The type II burst observed at Culgoora is associated with the transient loops, and no type II emission is identified with the faint arc.Due to its great speed, we interpret the faint arc as a manifestation of a shock wave, but also envision a separate shock wave associated with the transient loops as evidenced by the type II emission. Preliminary density measurements are consistent with this interpretation, and show the outer shock wave associated with the faint arc to have a Mach number MA ≤ 1.7. At present we have no convincing explanation for the lack of a type II burst in association with the arc.This work was supported in part by NASA through grants NSG-7287 and NAGW-91 to the University of Colorado, Boulder, and S-55989 to the High Altitude Observatory, National Center for Atmospheric Research. The National Center for Atmospheric Research, NCAR, is sponsored by the National Science Foundation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号