首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5016篇
  免费   35篇
  国内免费   12篇
航空   2525篇
航天技术   1781篇
综合类   17篇
航天   740篇
  2018年   73篇
  2017年   64篇
  2016年   53篇
  2014年   88篇
  2013年   123篇
  2012年   106篇
  2011年   156篇
  2010年   112篇
  2009年   183篇
  2008年   238篇
  2007年   122篇
  2006年   93篇
  2005年   129篇
  2004年   130篇
  2003年   156篇
  2002年   99篇
  2001年   162篇
  2000年   100篇
  1999年   93篇
  1998年   139篇
  1997年   95篇
  1996年   133篇
  1995年   166篇
  1994年   179篇
  1993年   95篇
  1992年   121篇
  1991年   58篇
  1990年   60篇
  1989年   131篇
  1988年   51篇
  1987年   52篇
  1986年   76篇
  1985年   158篇
  1984年   136篇
  1983年   117篇
  1982年   115篇
  1981年   155篇
  1980年   51篇
  1979年   45篇
  1978年   51篇
  1977年   45篇
  1975年   51篇
  1974年   45篇
  1973年   41篇
  1972年   36篇
  1971年   45篇
  1970年   34篇
  1969年   39篇
  1968年   34篇
  1967年   36篇
排序方式: 共有5063条查询结果,搜索用时 0 毫秒
91.
Improved spacecraft shield design requires early entry of radiation constraints into the design process to maximize performance and minimize costs. As a result, we have been investigating high-speed computational procedures to allow shield analysis from the preliminary design concepts to the final design. In particular, we will discuss the progress towards a full three-dimensional and computationally efficient deterministic code for which the current HZETRN evaluates the lowest-order asymptotic term. HZETRN is the first deterministic solution to the Boltzmann equation allowing field mapping within the International Space Station (ISS) in tens of minutes using standard finite element method (FEM) geometry common to engineering design practice enabling development of integrated multidisciplinary design optimization methods. A single ray trace in ISS FEM geometry requires 14 ms and severely limits application of Monte Carlo methods to such engineering models. A potential means of improving the Monte Carlo efficiency in coupling to spacecraft geometry is given in terms of re-configurable computing and could be utilized in the final design as verification of the deterministic method optimized design.  相似文献   
92.
93.
Recent successes in the effort to miniaturize spacecraft components using MEMS technology, integrated passive components, and low power electronics have driven the need for very low power, low profile, low mass micro-power sources for micro/nanospacecraft applications. Recent work at JPL has focused upon developing thin film/micro-batteries compatible with temperature sensitive substrates. A process to prepare crystalline LiCoO2 films with RF sputtering and moderate (<700°C) annealing temperature has been developed. Thin film batteries with cathode films prepared with this process have specific capacities approaching the practical limit for LiCoO2, with acceptable rate capabilities and discharge voltage profiles. Solid-state micro-scale batteries have also been fabricated with feature sizes on the order of 50 microns  相似文献   
94.
The focus of resource recovery research at the KSC-CELSS Breadboard Project has been the evaluation of microbiologically mediated biodegradation of crop residues by manipulation of bioreactor process and environmental variables. We will present results from over 3 years of studies that used laboratory- and breadboard-scale (8 and 120 L working volumes, respectively) aerobic, fed-batch, continuous stirred tank reactors (CSTR) for recovery of carbon and minerals from breadboard grown wheat and white potato residues. The paper will focus on the effects of a key process variable--bioreactor retention time--on response variables indicative of bioreactor performance. The goal is to determine the shortest retention time that is feasible for processing CELSS crop residues, thereby reducing bioreactor volume and weight requirements. Pushing the lower limits of bioreactor retention times will provide useful data for engineers who need to compare biological and physicochemical components. Bioreactor retention times were manipulated to range between 0.25 and 48 days. Results indicate that increases in retention time lead to a 4-fold increase in crop residue biodegradation, as measured by both dry weight losses and CO2 production. A similar overall trend was also observed for crop residue fiber (cellulose and hemicellulose), with a noticeable jump in cellulose degradation between the 5.3 day and 10.7 day retention times. Water-soluble organic compounds (measured as soluble TOC) were appreciably reduced by more than 4-fold at all retention times tested. Results from a study of even shorter retention times (down to 0.25 days), in progress, will also be presented.  相似文献   
95.
The Porous Tube Plant Nutrient Delivery System (PTPNDS), a hydrophilic, microporous ceramic tube hydroponic system designed for microgravity, will be tested in a middeck locker of the Space Shuttle. The flight experiment will focus on hardware operation and assess its ability to support seed germination and early seedling growth in microgravity. The water controlling system of the PTPNDS hardware has been successfully tested during the parabolic flight of the KC-135. One challenge to the development of the space flight experiment was to devise a method of holding seeds to the cylindrical porous tube. The seed-holder must provide water and air to the seed, absorb water from the porous tube, withstand sterilization, provide a clear path for shoots and roots to emerge, and be composed of flight qualified materials. In preparation for the flight experiment, a wheat seed-holder has been designed that utilizes a cellulose acetate plug to facilitate imbibition and to hold the wheat seeds in contact with the porous tube in the correct orientation during the vibration of launch and the microgravity environment of orbit. Germination and growth studies with wheat at a range of temperatures showed that optimal moisture was 78% (by weight) in the cellulose acetate seed holders. These and other design considerations are discussed.  相似文献   
96.
The abiogenic synthesis of pyrimidine nucleotides in solid state has been investigated. Our experiment indicates that natural nucleotides are produced in thin films prepared from nucleoside and inorganic phosphate by irradiating with vacuum ultraviolet light (VUV, lambda=100-200 nm). We have investigated the influence of the type of nucleic acids base (thymidine, cytosine, uracil) and the structure of sugar moiety (ribose or deoxyribose) on the course and yield of reaction. We compared the action of vacuum ultraviolet light with action of gamma-radiation, heat and biology significant UV (254 nm) which have been investigated earlier. The occurrence of these reaction in open space is discussed.  相似文献   
97.
98.
Previously, K. Bakhtar and E. Sagal [ibid. vol. 17, pp. 4-11, 2002] made remarkable claims for the performance of the Bakhtar Associates ground-penetrating radar (GPR) in detecting and classifying buried unexploded ordnance (UXO). In this article, we report the results of the series of blind tests on the EarthRadar carried out during the Fall of 2000 and Spring of 2001, which led to very different conclusions regarding the radar's performance. The contents of this article are excerpted from the final report on the testing, prepared by the Institute for Defense Analyses  相似文献   
99.
This article highlights the first results of investigations on the general vitality and damage endpoints caused by cosmic ionizing radiation in dry, dormant plant seeds of the crucifer plant Arabidopsis thaliana (L.) Heynh. and the ascomycete Sordaria fimicola after 69 month stay in space. Wild-type and mutant gene marker lines were included in Free Flyer Biostack containers and exposed on earth and side tray of the LDEF-1 satellite. The damage in biological endpoints observed in the seeds increased in the side tray sample compared to the earth tray sample. For the ascospores we found different effects depending on the biological endpoints investigated for both expositions.  相似文献   
100.
We have demonstrated that etiolated soybean seedlings grown under the altered gravity conditions of clinorotation (1 rpm) and centrifugation (5xg) exhibit changes in starch metabolism. Cotyledon starch concentration was lower (-28%) in clinorotated plants and higher (+24%) in centrifuged plants than in vertical control plants. The activity of ADP-glucose pyrophosphorylase in the cotyledons was affected in a similar way, i.e. lower (-37%) in the clinorotated plants and higher (+22%) in the centrifuged plants. Other starch metabolic enzyme activities, starch synthase, starch phosphorylase and total hydrolase were not affected by the altered gravity treatments. We conclude that the observed changes in starch concentrations were primarily due to gravity-mediated differences in ADP-glucose pyrophosphorylase activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号