首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2444篇
  免费   10篇
  国内免费   5篇
航空   1331篇
航天技术   866篇
综合类   19篇
航天   243篇
  2018年   35篇
  2017年   26篇
  2014年   24篇
  2013年   58篇
  2012年   34篇
  2011年   64篇
  2010年   52篇
  2009年   66篇
  2008年   129篇
  2007年   47篇
  2006年   39篇
  2005年   58篇
  2004年   73篇
  2003年   72篇
  2002年   37篇
  2001年   59篇
  2000年   55篇
  1999年   33篇
  1998年   77篇
  1997年   53篇
  1996年   64篇
  1995年   72篇
  1994年   88篇
  1993年   51篇
  1992年   75篇
  1991年   30篇
  1990年   33篇
  1989年   71篇
  1988年   24篇
  1987年   29篇
  1986年   50篇
  1985年   95篇
  1984年   62篇
  1983年   61篇
  1982年   59篇
  1981年   79篇
  1980年   35篇
  1979年   27篇
  1978年   25篇
  1977年   25篇
  1975年   25篇
  1974年   24篇
  1973年   25篇
  1972年   22篇
  1971年   31篇
  1970年   17篇
  1969年   27篇
  1968年   18篇
  1967年   20篇
  1966年   19篇
排序方式: 共有2459条查询结果,搜索用时 312 毫秒
681.
Camprubí  E.  de Leeuw  J. W.  House  C. H.  Raulin  F.  Russell  M. J.  Spang  A.  Tirumalai  M. R.  Westall  F. 《Space Science Reviews》2019,215(8):1-35

The Rosetta observations have greatly advanced our knowledge of the cometary nucleus and its immediate environment. However, constraints on the mission (both planned and unplanned), the only partially successful Philae lander, and other instrumental issues have inevitably resulted in open questions. Surprising results from the many successful Rosetta observations have also opened new questions, unimagined when Rosetta was first planned. We discuss these and introduce several mission concepts that might address these issues. It is apparent that a sample return mission as originally conceived in the 1980s during the genesis of Rosetta would provide many answers but it is arguable whether it is technically feasible even with today’s technology and knowledge. Less ambitious mission concepts are described to address the suggested main outstanding scientific goals.

  相似文献   
682.
Loto’aniu  T. M.  Redmon  R. J.  Califf  S.  Singer  H. J.  Rowland  W.  Macintyre  S.  Chastain  C.  Dence  R.  Bailey  R.  Shoemaker  E.  Rich  F. J.  Chu  D.  Early  D.  Kronenwetter  J.  Todirita  M. 《Space Science Reviews》2019,215(4):1-25
Space Science Reviews - The Modular Multispectral Imaging Array (MMIA) is a suite of optical sensors mounted on an external platform of the European Space Agency’s Columbus Module on the...  相似文献   
683.
Daibog  E. I.  Logachev  Yu. I.  Kahler  S. W.  Kecskemety  K. 《Cosmic Research》2004,42(4):362-369
Time profile of the fluxes of energetic solar particles generated by solar flares (including their phase of decline) is formed to a large extent by the structure of the interplanetary magnetic field and its irregularities that move away from the Sun with the solar wind velocity. When propagation is a pure diffusion, the solar particle fluxes decay after the maximum in a power-law manner. At the same time in many cases this decay is exponential, which is indicative of a considerable role played by the convective sweep of particles and their adiabatic deceleration in the expanding solar wind. In this paper we consider the events with long exponential decays and newly discovered series of successive events with identical exponential decays lasting for one to two weeks or more. They allow us to assume that the interplanetary space is stable and homogeneous during this period.  相似文献   
684.
SVET Space Greenhouse (SG)--the first automated facility for growing of higher plants in microgravity was designed in the eighty years to be used for the future BLSS. The first successful experiment with vegetables was carried out in 1990 on the MIR Space Station (SS). The experiments in SVET SG were resumed in 1995, when an American Gas Exchange Measurement System (GEMS) was added. A three-month wheat experiment was carried out as part of MIR-SHUTTLE'95 program. SVET-2 SG Bulgarian equipment of a new generation with optimised characteristics was developed (financed by NASA). The new SVET-GEMS equipment was launched on board the MIR SS and a successful six-month experiments for growing up of two crops of wheat were conducted in 1996 - 97 as part of MIR-NASA-3 program. The first of these "Greenhouse" experiments (123 days) with the goal to grow wheat through a complete life cycle is described. Nearly 300 heads developed but no seeds were produced. A second crop of wheat was planted and after 42 days the plants were frozen for biochemical investigations. The main environmental parameters during the six-month experiments in SVET (substrate moisture and lighting period) are given. The results and the contribution to BLSS are discussed.  相似文献   
685.
We investigate the nature of the faint X-ray source population through X-ray spectroscopy and variability analyses of 136 active galactic nuclei (AGN) detected in the 2 Ms Chandra Deep Field-North Survey with >200 background-subtracted 0.5–8.0 keV counts [F0.5–8.0 keV = (1.4−200) × 10−15 erg cm−2 s−1]. Our preliminary spectral analyses yield median spectral parameters of Γ = 1.61 and intrinsic NH = 6.2 × 1021 cm−2 (z = 1 assumed when no redshift available) when the AGN spectra are fitted with a simple absorbed power-law model. However, considerable spectral complexity is apparent (e.g., reflection, partial covering) and must be taken into account to model the data accurately. Moreover, the choice of spectral model (i.e., free vs. fixed photon index) has a pronounced effect on the derived JVH distribution and, to a lesser extent, the X-ray luminosity distribution. We also find that among the 136 AGN, 10 (≈7%) show significant Fe K emission-line features with equivalent widths in the range 0.1–1.3 keV. Two of these emission-line AGN could potentially be Compton thick (i.e., Γ < 1.0 and large Fe K equivalent width). Finally, we find that 81 (≈60%) of the 136 AGN show signs of variability, and that this fraction increases significantly (≈80–90%) when better photon statistics are available.  相似文献   
686.
The radial distribution of the high-energy (70 MeV-5 GeV) gamma-ray emissivity in the outer Milky Way is derived. The kinematics of HI are used to construct column-density maps in three galacto-centric distance ranges in the outer Galaxy. These maps are used in combination with COS-B gamma-ray data to determine gamma-ray emissivities in these distance ranges. A steep negative gradient of the emissivity for the 70 MeV-150 MeV energy range is found in the outer Galaxy. The emissivity for the 300 MeV-5 GeV range is found to be approximately constant (within 20%) and equal to the local value out to large (20 kpc) galacto-centric distances. These results imply a hardening of the gamma-ray spectrum with increrasing distance and for R > 16 kpc the spectrum is shown to be consistent with a π°-decay spectrum with the intensity expected from the local measurement of the cosmic-ray nuclei spectrum. The energy-dependent decrease is interpreted as a steep gradient in the cosmic-ray electron density and a near constancy of the nuclear component. The galactic origin of electrons with energies up to several hundreds of MeV is confirmed, while for cosmic-ray nuclei with energies of a few GeV either confinement in a large galactic halo or an extragalactic origin is suggested by the data.  相似文献   
687.
688.
A cosmic-ray detector system (CRS) has been developed for the Voyager mission which will measure the energy spectrum of electrons from 3–110 MeV and the energy spectra and elemental composition of all cosmic-ray nuclei from hydrogen through iron over an energy range from 1–500 MeV/nuc. Isotopes of hydrogen through sulfur will be resolved from 2–75 MeV/nuc. Studies with CRS data will provide information on the energy content, origin and acceleration process, life history, and dynamics of cosmic rays in the galaxy, and contribute to an understanding of the nucleosynthesis of elements in the cosmic-ray sources. Particular emphasis will be placed on low-energy phenomena that are expected to exist in interstellar space and are known to be present in the outer Solar System. This investigation will also add to our understanding of the transport of cosmic rays, Jovian electrons, and low-energy interplanetary particles over an extended region of interplanetary space. A major contribution to these areas of study will be the measurement of three-dimensional streaming patterns of nuclei from H through Fe and electrons over an extended energy range, with a precision that will allow determination of anisotropies down to 1%. The required combination of charge resolution, reliability and redundance has been achieved with systems consisting entirely of solid-state charged-particle detectors.Principal Investigator of the Voyager Cosmic Ray Experiment.  相似文献   
689.
The infrared investigation on Voyager uses two interferometers covering the spectral ranges 60–600 cm–1 (17–170 m) and 1000–7000 cm–1 (1.4–10 m), and a radiometer covering the range 8000–25 000 cm–1 (0.4–1.2 m). Two spectral resolutions (approximately 6.5 and 2.0 cm–1) are available for each of the interferometers. In the middle of the thermal channel (far infrared interferometer) the noise level is equivalent to the signal from a target at 50 K; in the middle of the reflected sunlight channel (near infrared interferometer) the noise level is equivalent to the signal from an object of albedo 0.2 at the distance of Uranus.For planets and satellites with substantial atmospheres, the data will be used to investigate cloud and gas composition (including isotopic ratios), haze scale height, atmospheric vertical thermal structure, local and planetary circulation and dynamics, and planetary energy balance. For satellites with tenuous atmospheres, data will be gathered on surface and atmospheric composition, surface temperature and thermal properties, local and global phase functions, and surface structure. For Saturn's rings, the composition and radial structure, particle size and thermal characteristics will be investigated. Comparative studies of the planets and their satellite systems will be carried out.Paris Observatory.Cornell University.Jet Propulsion Laboratory.University of Maryland.  相似文献   
690.
Book reviews     
Space Science Reviews -  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号