首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2444篇
  免费   10篇
  国内免费   5篇
航空   1331篇
航天技术   866篇
综合类   19篇
航天   243篇
  2018年   35篇
  2017年   26篇
  2014年   24篇
  2013年   58篇
  2012年   34篇
  2011年   64篇
  2010年   52篇
  2009年   66篇
  2008年   129篇
  2007年   47篇
  2006年   39篇
  2005年   58篇
  2004年   73篇
  2003年   72篇
  2002年   37篇
  2001年   59篇
  2000年   55篇
  1999年   33篇
  1998年   77篇
  1997年   53篇
  1996年   64篇
  1995年   72篇
  1994年   88篇
  1993年   51篇
  1992年   75篇
  1991年   30篇
  1990年   33篇
  1989年   71篇
  1988年   24篇
  1987年   29篇
  1986年   50篇
  1985年   95篇
  1984年   62篇
  1983年   61篇
  1982年   59篇
  1981年   79篇
  1980年   35篇
  1979年   27篇
  1978年   25篇
  1977年   25篇
  1975年   25篇
  1974年   24篇
  1973年   25篇
  1972年   22篇
  1971年   31篇
  1970年   17篇
  1969年   27篇
  1968年   18篇
  1967年   20篇
  1966年   19篇
排序方式: 共有2459条查询结果,搜索用时 46 毫秒
531.
Precision orbit determination on the TOPEX/Poseidon (T/P) altimeter satellite is now being routinely achieved with sub-5cm radial and sub-15 cm total positioning accuracy using state-of-the-art modeling with precision tracking provided by a combination of: (a) global Satellite Laser Ranging (SLR) and Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS), or (b) the Global Positioning System (GPS) Constellation which provides pseudo-range and carrier phase observations. The geostationary Tracking and Data Relay Satellite System (TDRSS) satellites are providing the operational tracking and communication support for this mission. The TDRSS Doppler data are of high precision (0.3 mm/s nominal noise levels). Unlike other satellite missions supported operationally by TDRSS, T/P has high quality independent tracking which enables absolute orbit accuracy assessments. In addition, the T/P satellite provides extensive geometry for positioning a satellite at geostationary altitude, and thus the TDRSS-T/P data provides an excellent means for determining the TDRS orbits. Arc lengths of 7 and 10 days with varying degrees of T/P spacecraft attitude complexity are studied. Sub-meter T/P total positioning error is achieved when using the TDRSS range-rate data, with radial orbit errors of 10.6 cm and 15.5 cm RMS for the two arcs studied. Current limitations in the TDRSS precision orbit determination capability include mismodeling of numerous TDRSS satellite-specific dynamic and electronic effects, and in the inadequate treatment of the propagation delay and bending arising from the wet troposphere and ionosphere.  相似文献   
532.
Intermediate or mesoscale processes mediate the transfer of mass, momentum, and energy across the dynamic solar wind-magnetosphere interface, and the propagation of this input through the system to the ionosphere and atmosphere. The Dartmouth-Berkeley-Minnesota theory team has identified a number of mesoscale phenomena to be investigated as part of the GGS program, including: (1) effects of upstream density fluctuations on magnetopause dynamics, (2) three-dimensional reconnection, (3) magnetopause depletion layer studies, (4) ring current interaction with Pc 1 and Pc 5 waves, (5) generation of ion Larmor-scale current layers in the near Earth plasmasheet, (6) test particle studies in the magnetotail, (7) simulation of magnetosphere- ionosphere coupling including effects of kinetic Alfvén waves and (8) auroral acceleration region studies of the effects of kinetic Alfvén waves on particle distribution functions. A broad range of techniques will be implemented including ideal and reduced MHD, two fluid, hybrid, particle-in-cell and test particle simulations. Detailed comparison of simulation results with GGS satellite and ground based data will be undertaken.  相似文献   
533.
The preflare structure, prior to two-ribbon flares, is thought to consist of magnetic field arcades. As a first approximation, the magnetic field is assumed to be invariant along the length of the arcade. The ideal MHD stability of such structures is studied using the energy method. The dense photosphere is simulated by line-typing the magnetic field and a discussion of boundary conditions is presented. Using the energy method, sufficient conditions for stability are obtained for certain magnetohydrostatic fields that also include the effect of gravity. Under certain circumstances, these conditions become necessary and sufficient. Some comments on resistive effects are mentioned.  相似文献   
534.
A series of experiments were performed in the Spacelab-1 mission on November/December, 1983, pre-, in-, and postflight. These experiments covered various aspects of the functions of the vestibular system, the inflight tests comprising threshold measurements for linear movements in three orthogonal axes, optokinetic stimulation, vestibulo-ocular reflexes under linear and angular accelerations, caloric stimulation with and without linear accelerations; pre- and postflight tests repeated the inflight protocol with the addition of subjective vertical and eye counter-rotation measurements using a tilt table. One of the most surprising and significant results was the caloric test: strong caloric nystagmus on the two subjects tested was recorded inflight; this was contrary to what was expected from Barany's convection hypothesis for caloric nystagmus.  相似文献   
535.
Power source requirements for the Soldier System, which includes all items/equipment worn, consumed, or carried by the soldier in the field for his or her individual use, are discussed. The use of fuel cells, which offer silence and high efficiency, is considered. It is concluded that the proton exchange membrane (PEM) fuel cell coupled with a good hydrogen source offers a very attractive power source for the Soldier System and for other portable requirements needing power in the range of 50 to 500 W  相似文献   
536.
Niobium-platinum samples of compositions ranging from 16 to 32 at. % have been undercooled to as much as 540 K in the low gravity, containerless environment of the 105 meter drop tube located at the George C. Marshall Space Flight Center. Undercooling was terminated in the Nb-Pt samples by the nucleation and growth of the Nb3Pt phase. In the 16–18 at. % Pt samples, this resulted in samples which are completely Nb3Pt, in contrast to both the equilibrium phase diagram and the non-undercooled samples which formed with Nb dendrites and interdendritic Nb3Pt. Undercoolings for the Nb-Si samples were up to 670 K, which corresponds to 27% of the liquidus temperature or 80% of the estimated hypercooling limit. In the Nb-Si system, a coupled zone was identified as well as a metastable extension of the solubility limit of Si in Nb due to deep undercooling.  相似文献   
537.
We describe the differential energy spectrum of trapped particles measured by a solid-state charged particle telescope in the mid-deck of the Space Shuttle during the period of solar maximum. The telescope was flown in two high altitude flights at 28.5° and 57° inclination. Assuming, as is normally done, that the variations of Shuttle orientation during the missions lead to average isotropic incident spectra, the observed spectrum disagrees significantly from AP8 model calculations. This indicates the need to take into consideration the variations of solid-angle direction relative to the magnetic field. The measurements show that there is a very significant flux of secondary light ions. The energy spectra of these ions does not agree with the production spectrum from radiation transport calculations based on omni-directional AP8 Max model as an input energy spectrum.

We also describe measurements of linear energy transfer spectra using a tissue equivalent proportional counter (TEPC) flown both in the mid-deck and the payload bay of the Space Shuttle. Comparisons are made between linear energy transfer spectral measurements AP8 model-based radiation transport predictions, and thermoluminescent dosimeter (TLD) measurements. The absorbed dose-rate measurements using TLD's are roughly 25% lower than the TEPC-measured dose rate measurements.  相似文献   

538.
Corrected thermal net radiation measurements from the four Pioneer Venus entry probes at latitudes of 60°N, 31°S, 27°S, and 4°N are presented. Three main conclusions can be drawn from comparisons of the corrected fluxes with radiative transfer calculations: (1) sounder probe net fluxes are consistent with the number density of large cloud particles (mode 3) measured on the same probe, but the IR measurements as a whole are most consistent with a significantly reduced mode 3 contribution to the cloud opacity; (2) at all probe sites, the fluxes imply that the upper cloud contains a yet undetected source of IR opacity; and (3) beneath the clouds the fluxes at a given altitude increase with latitude, suggesting greater IR cooling below the clouds at high latitudes and water vapor mixing ratios of about 2–5×10?5 near 60°, 2–5×10?4 near 30°, and >5×10?4 near the equator.  相似文献   
539.
The author reports experience with design of human factors training for aircraft engineering operations and maintenance. The program was based on five principles: observable skills-based training; integration with policies, practices, and procedures; data-driven and performance focused material; training needs fit organizational and national cultures; and training must be useful and beneficial.  相似文献   
540.
The Magnetospheric Multiscale (MMS) mission will provide measurement capabilities, which will exceed those of earlier and even contemporary missions by orders of magnitude. MMS will, for the first time, be able to measure directly and with sufficient resolution key features of the magnetic reconnection process, down to the critical electron scales, which need to be resolved to understand how reconnection works. Owing to the complexity and extremely high spatial resolution required, no prior measurements exist, which could be employed to guide the definition of measurement requirements, and consequently set essential parameters for mission planning and execution. Insight into expected details of the reconnection process could hence only been obtained from theory and modern kinetic modeling. This situation was recognized early on by MMS leadership, which supported the formation of a fully integrated Theory and Modeling Team (TMT). The TMT participated in all aspects of mission planning, from the proposal stage to individual aspects of instrument performance characteristics. It provided and continues to provide to the mission the latest insights regarding the kinetic physics of magnetic reconnection, as well as associated particle acceleration and turbulence, assuring that, to the best of modern knowledge, the mission is prepared to resolve the inner workings of the magnetic reconnection process. The present paper provides a summary of key recent results or reconnection research by TMT members.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号