首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   0篇
航空   22篇
航天技术   4篇
航天   2篇
  2016年   1篇
  2014年   3篇
  2013年   3篇
  2011年   5篇
  2008年   14篇
  2005年   1篇
  1999年   1篇
排序方式: 共有28条查询结果,搜索用时 31 毫秒
11.
First Results of the THEMIS Search Coil Magnetometers   总被引:1,自引:0,他引:1  
We present the first data from the THEMIS Search Coil Magnetometers (SCM), taken between March and June 2007 while the THEMIS constellation apogee moved from the duskside toward the dawnside. Data reduction, especially the SCM calibration method and spurious noise reduction process, is described. The signatures of magnetic fluctuations in key magnetospheric regions such as the bow shock, the magnetopause and the magnetotail during a substorm, are described. We also discuss the role that magnetic fluctuations could play in plasma transport, acceleration and heating.  相似文献   
12.
This paper describes a new algorithm to aid stand-alone GNSS positioning in areas of bad signal reception using a Digital Elevation Model (DEM). Traditional Height-Aiding (HA) algorithms assume either a preset (fixed) value for the receiver elevation or rely on the elevation value that corresponds to the nearest available position fix. This may lead in erroneous receiver elevation estimates that, under circumstances, are inefficient to aid effectively GNSS positioning. In this study, the receiver elevation is updated at every iteration step of the navigation solution through dynamic interpolation of the elevation model. The algorithm, because of its ability to extract and fully exploit the elevation information derived from a digital model, it can prove particularly useful in forested areas with steep-sloped terrain. Extended test runs were undertaken to validate the correctness of the mathematical model and the feasibility of the algorithm and associated software. Particularly, analysis of a dataset acquired in a forested, rapidly undulating environment reveals significant average improvement in all performance metrics of positioning, namely the GNSS position availability (50%), accuracy (56%) and external reliability (86%) compared to the Standard Point Positioning (SPP) solution. Moreover, it was found that the method can cope successfully in marginal operating conditions with situations of bad satellite geometry and satellite signals affected by interference due to tree canopy.  相似文献   
13.
During the pre-launch phase of NASA’s THEMIS mission, the Education and Public Outreach (E/PO) program successfully brought the excitement of THEMIS to the public, students and teachers through a variety of programs. The Geomagnetic Event Observation Network by Students (GEONS) was the main effort during this time, a project in which 13 magnetometers were placed in or near 13 rural schools across the country. High school teachers and a few middle school teachers at these and/or neighboring schools took part in a long-term professional development program based around space science and the magnetometer data. The teachers created week-long to semester-long projects during which their students worked on THEMIS lessons that they, their colleagues, and the E/PO team created. In addition to this program, THEMIS E/PO also launched the only Lawrence Hall of Science (LHS) Great Explorations in Mathematics and Science (GEMS) site in Nevada. This site provides a sustainable place for teacher professional development using hands-on GEMS activities, and has been used by teachers around the state of Nevada. Short-term professional development for K-12 teachers (one-hour to two-day workshops), with a focus on the Tribal College and Society for the Advancement of Chicanos and Native Americans in Science (SACNAS) communities have reached hundreds of teachers across the country. A Space Telescope Science Institute (STScI) ViewSpace show on auroras and THEMIS was created and distributed, and shown in over a hundred science centers and museums nationwide. The THEMIS E/PO program developed and maintained a THEMIS E/PO Website for dissemination of (1) information and multimedia about the science and engineering of THEMIS, (2) updated news about the mission in language appropriate for the public, (3) the GEONS data, the GEONS teacher guides with classroom activities, and (4) information about the THEMIS E/PO program. Hundreds of thousands of visitors have viewed this website. In this paper, we describe these programs along with the evaluation results, and discuss what lessons we learned along the way.  相似文献   
14.
Early observations by the THEMIS ESA plasma instrument have revealed new details of the dayside magnetosphere. As an introduction to THEMIS plasma data, this paper presents observations of plasmaspheric plumes, ionospheric ion outflows, field line resonances, structure at the low latitude boundary layer, flux transfer events at the magnetopause, and wave and particle interactions at the bow shock. These observations demonstrate the capabilities of the plasma sensors and the synergy of its measurements with the other THEMIS experiments. In addition, the paper includes discussions of various performance issues with the ESA instrument such as sources of sensor background, measurement limitations, and data formatting problems. These initial results demonstrate successful achievement of all measurement objectives for the plasma instrument.  相似文献   
15.
THEMIS, NASA’s fifth Medium Class Explorer (MIDEX) mission will monitor the onset and macro-scale evolution of magnetospheric substorms. It is a fleet of 5 small satellites (probes) measuring in situ the magnetospheric particles and fields while a network of 20 ground based observatories (GBOs) monitor auroral brightening over Northern America. Three inner probes (~1 day period, 10 RE apogee) monitor current disruption and two outer probes (~2 day and ~4 day period, 20 RE and 30 RE apogees respectively) monitor lobe flux dissipation. In order to time and localize substorm onsets, THEMIS utilizes Sun–Earth aligned conjunctions between the probes when the ground-based observatories are on the nightside. To maintain high recurrence of conjunctions the outer orbits have to be actively adjusted during each observation season. Orbit maintenance is required to rearrange the inner probes for dayside observations and also inject the probes into their science orbits after near-simultaneous release from a common launch vehicle. We present an overview of the orbit strategy, which is primarily driven by the scientific goals of the mission but also represents a compromise between the probe thermal constraints and fuel capabilities. We outline the process of orbit design, describe the mission profile and explain how mission requirements are targeted and evaluated. Mission-specific tools, based on high-fidelity orbit prediction and common magnetospheric models, are also presented. The planning results have been verified by in-flight data from launch through the end of the first primary science seasons and have been used for mission adjustments subject to the early scientific results from the coast phase and first tail season.  相似文献   
16.
The THEMIS ESA Plasma Instrument and In-flight Calibration   总被引:3,自引:0,他引:3  
The THEMIS plasma instrument is designed to measure the ion and electron distribution functions over the energy range from a few eV up to 30 keV for electrons and 25 keV for ions. The instrument consists of a pair of “top hat” electrostatic analyzers with common 180°×6° fields-of-view that sweep out 4π steradians each 3 s spin period. Particles are detected by microchannel plate detectors and binned into six distributions whose energy, angle, and time resolution depend upon instrument mode. On-board moments are calculated, and processing includes corrections for spacecraft potential. This paper focuses on the ground and in-flight calibrations of the 10 sensors on five spacecraft. Cross-calibrations were facilitated by having all the plasma measurements available with the same resolution and format, along with spacecraft potential and magnetic field measurements in the same data set. Lessons learned from this effort should be useful for future multi-satellite missions.  相似文献   
17.
The Upgraded CARISMA Magnetometer Array in the THEMIS Era   总被引:1,自引:0,他引:1  
This review describes the infrastructure and capabilities of the expanded and upgraded Canadian Array for Realtime InvestigationS of Magnetic Activity (CARISMA) magnetometer array in the era of the THEMIS mission. Formerly operated as the Canadian Auroral Network for the OPEN Program Unified Study (CANOPUS) magnetometer array until 2003, CARISMA capabilities have been extended with the deployment of additional fluxgate magnetometer stations (to a total of 28), the upgrading of the fluxgate magnetometer cadence to a standard data product of 1 sample/s (raw sampled 8 samples/s data stream available on request), and the deployment of a new network of 8 pairs of induction coils (100 samples per second). CARISMA data, GPS-timed and backed up at remote field stations, is collected using Very Small Aperture Terminal (VSAT) satellite internet in real-time providing a real-time monitor for magnetic activity on a continent-wide scale. Operating under the magnetic footprint of the THEMIS probes, data from 5 CARISMA stations at 29–30 samples/s also forms part of the formal THEMIS ground-based observatory (GBO) data-stream. In addition to technical details, in this review we also outline some of the scientific capabilities of the CARISMA array for addressing all three of the scientific objectives of the THEMIS mission, namely: 1. Onset and evolution of the macroscale substorm instability, 2. Production of storm-time MeV electrons, and 3. Control of the solar wind-magnetosphere coupling by the bow shock, magnetosheath, and magnetopause. We further discuss some of the compelling questions related to these three THEMIS mission science objectives which can be addressed with CARISMA.  相似文献   
18.
The comprehensive THEMIS approach to solving the substorm problem calls for monitoring the nightside auroral oval with low-cost, robust white-light imagers and magnetometers that can deliver high time resolution data (0.33 and 2 Hz, respectively). A network of 20 Ground-Based Observatories (GBOs) are deployed across Canada and Alaska to support the collection of data from these instruments. Here we describe the system design of the observatory, with emphasis on how the design meets the environmental and data-collection requirements. We also review the design of the All Sky Imager (ASI), discuss how it was built to survive Arctic deployments, and summarize the optical characterizations performed to qualify the design to meet THEMIS mission requirements.  相似文献   
19.
The THEMIS Magnetic Cleanliness Program   总被引:1,自引:0,他引:1  
The five identical THEMIS Spacecraft, launched in February 2007, carry two magnetometers on each probe, one DC fluxgate (FGM) and one AC search coil (SCM). Due to the small size of the THEMIS probes, and the short length of the magnetometer booms, magnetic cleanliness was a particularly complex task for this medium sized mission. The requirements leveled on the spacecraft and instrument design required a detailed approach, but one that did not hamper the development of the probes during their short design, production and testing phase. In this paper we describe the magnetic cleanliness program’s requirements, design guidelines, program implementation, mission integration and test philosophy and present test results, and mission on-orbit performance.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号