The main objective of a life support system for space missions is to supply a crew with food, water and oxygen, and to eliminate their wastes. The ultimate goal is to achieve the highest degree of closure of the system using controlled processes offering a high level of reliability and flexibility. Enhancement of closure of a biological life support system (BLSS) that includes plants relies on increased regeneration of plant waste, and utilization of solid and liquid human wastes. Clearly, the robustness of a BLSS subjected to stress will be substantially determined by the robustness of the plant components of the phototrophic unit. The aim of the present work was to estimate the heat resistance of two plants (wheat and lettuce) grown on human wastes. Human exometabolites mineralized by hydrogen peroxide in an electromagnetic field were used to make a nutrient solution for the plants. We looked for a possible increase in the heat tolerance of the wheat plants using changes in photosynthetically active radiation (PAR) intensity during heat stress. At age 15 days, plants were subjected to a rise in air temperature (from 23 ± 1 °C to 44 ± 1 °С) under different PAR intensities for 4 h. The status of the photosynthetic apparatus of the plants was assessed by external СО2 gas exchange and fluorescence measurements. The increased irradiance of the plants during the high temperature period demonstrated its protective action for both the photosynthetic apparatus of the leaves and subsequent plant growth and development. The productivity of the plants subjected to temperature changes at 250 W m−2 of PAR did not differ from that of controls, whereas the productivity of the plants subjected to the same heat stress but in darkness was halved. 相似文献
Astronomical observatory site selection is a complex problem that involves evaluation of multiple factors from different sources. The aim of this study is to select the best possible candidates for astronomical observations sites using Multi-Criteria Decision Analysis integrated with Geographical Information Systems and remote sensing technologies. The study was implemented in the Antalya province of Turkey, which is convenient for astronomical site observatory facilities with its appropriate climate properties and weather conditions. Eleven factors (cloud cover, precipitable water, earthquake zones, geology, landslide inventory, active fault lines, Digital Elevation Model, city lights, mining activities, settlement areas, roads) were determined, splitting into three categories; meteorological, geographical and anthropogenic criteria. These factors were evaluated using Analytical Hierarchy Process method and the weights of criteria layers were determined. As a result, the most suitable areas were located extensively in western and eastern part of Antalya. This study offers a robust, accurate, cost and time effective procedure for preliminary site selection for astronomical observatory. However, for a final decision of the best location of astronomical observatory, site testing measurements and atmospheric seeing observations will be further required in these preliminary areas. 相似文献
Magnetosphere with a size comparable to the ion kinetic scales is investigated by means of laboratory experiment, analytical analysis and Hall MHD simulation. In experiment a specific magnetic field was observed which is non-coplanar to dipole field, does not change sign at dipole moment inversion and could be generated only via the quadratic Hall term. Magnetopause position and plasma stand off distance were found to be profoundly different between the experimental regimes with small and large ion inertia length. In the previous studies of a mini-magnetosphere by kinetic codes such novel features were observed as absence of the bow shock and plasma stopping at the Stoermer particle limit instead of the pressure balance distance. Proposed analytical model explains these features by Hall currents which tend to cancel magnetic field convection by ions. Performed numerical simulation shows a good agreement with experiment and analytical model. It gives detailed spatial structure of the Hall field and reveals that while ions penetrate deep inside mini-magnetosphere electrons overflow around it along magnetopause boundary. 相似文献
Solar energetic particle (SEP) cutoffs at geosynchronous orbit are sensitive to moderate geomagnetic activity and undergo daily variations due to the day–night asymmetry of the magnetosphere. At geosynchronous orbit, cutoff rigidity also has a large directional dependence, with the highest cutoff rigidity corresponding to ions arriving from magnetic east and lowest cutoff rigidity corresponding to ions incident from the west. Consequently, during geomagnetically quiet periods, the SEP flux observed by an eastward facing particle detector is significantly lower than observed by a westward facing particle detector. During geomagnetically disturbed periods the cutoff is suppressed allowing SEPs access well inside of geosynchronous, so that the east–west SEP flux ratio approaches unity. Variations in the east–west SEP flux ratio observed by GOES Energetic Particle Sensors (EPS) have recently been reported by Rodriguez et al. (2010). In NOAA’s operational processing of EPS count rates into differential fluxes, the differential flux is treated as isotropic and flat over the energy width of the channel. To compare modeled SEP flux with GOES EPS observations, the anisotropy of the flux over the EPS energy range and field of view must be taken into account. A technique for making direct comparisons between GOES EPS observations and SEP flux modeled using numerically computed geomagnetic cutoffs is presented. Initial results from a comparison between modeled and observed flux during the 6–11 December 2006 SEP event are also presented. The modeled cutoffs reproduce the observed flux variations well but are in general too high. 相似文献
In this paper we study the influence of the interplanetary magnetic field (IMF) polarity changes caused by the Earth passing through the IMF sector boundary on the dynamic processes taking place in neutral atmosphere within the altitude interval of the upper mesosphere–lower thermosphere (83–101 km). The analysis has revealed the influence of the IMF sector structure on dynamics of the upper mesosphere–lower thermosphere. There has been a significant seasonal variation of the wind reaction to the IMF polarity changes observed. The influence of the IMF polarity changes on neutral atmosphere dynamics within the altitude range of 83–101 km is most pronounced in the zonal component of neural wind when the IMF polarity changes from negative to positive in all the seasons except for spring and when IMF polarity changes from positive to negative – in spring only. 相似文献
Using data from dosimetry-radiometry system "Liulin" on board of "Mir"-space station the particle flux and doserate during September-October, 1989 has been studied. The orbit of the station was 379 km perigee, 410 km apogee and 51.6 degrees inclination. Special attention has been paid to the flux and doserate changes inside the station after intensive solar proton events (SPE) on 29 of September, 1989. The comparison between the doses before and after the solar flares shows increase of the calculated mean dose per day by factor of 10 to 200. During the SPE on the 29 of September the additional dose was 310 mrad. The results of the experiment are compared with the data for the solar proton fluxes obtained on the GOES-7 satellite. 相似文献
After a polar reversal in one hemisphere the Sun has two polar caps of the same sign, leaving it in a kind of monopolar state. It may take months before a polar reversal occurs in the other hemisphere. The situation may have been extreme in the Maunder Minimum where the northern hemisphere most probably did not have polar reversals during several cycles, while the southern hemisphere may have had some. This may affect the interplanetary field and thus the cosmic rays reaching the Earth. Using the relation between the Wolf number and the speed of the global magnetic field regions the yearly mean Wolf number has to exceed 40 in order to have polar reversals, hence per hemisphere we expect that it must exceed 20. This may be used to give a definition of a deep minimum. 相似文献
The paper presents a numerical analysis of Wolf sunspot numbers, with emphasis being laid on the asymmetry of the cyclic variation. To that purpose we have used the standard tables of monthly numbers and, in addition to the Fourier transform, we have done an overall analysis of the trend around each maximum. Many of these maxima present an asymmetry, and sometimes the presence of two maxima is evident. The non-linear RLC van der Pol model suggested by Polygiannakis and Moussas [Polygiannakis, J.M., Moussas, X. A nonlinear RLC solar cycle model. Solar Physics 163, 193–203, 1996] can explain many features of the observed asymmetries. Our analysis shows that a consistent deconvolution in two Gaussian curves is possible for each maximum. We may presume that the observed sunspot time series includes a hidden complex structure. This could give some hints of a behavior typical for coupled non-linear oscillators. It is a matter of further interpretations. whether such “oscillators” are just a simple approximation of a much complex phenomenon, or are a sign of another more physically based model like the dynamo model (or other models). 相似文献
This paper deals with the theory of Marangoni boundary layers developing near the free surface of a nonuniformly heated liquid.
In the Introduction the notion of a thermocapillary effect is considered, and the conditions, under which thermocapillary flow is dominant, are elucidated. The similarity criteria of the problems are revealed, and the effects resulting from melt convection are considered.
In the second section the mathematical aspects of the theory of Marangoni boundary layers are considered. The boundary layer effect on the form of a free surface is investigated, and some examples are presented.
In Section 3 a qualitative flow pattern in a Marangoni boundary layer is analyzed, similarities and differences in the problems of Prandtl and Marangoni boundary layer theory are discussed. The possibility of Marangoni boundary layer degeneration at the outer boundary, as well as the initiation of flow containing a counter-stream zone are emphasized.
The fourth section outlines the calculation scheme on the basis of boundary-layer theory for convective flows with directed crystallization and in the absence of mass forces. Some examples are presented.
In the fifth section some problems of the theory of Marangoni boundary layers that need further investigation are discussed. 相似文献
Analyses are presented of the performance of binary and M-ary coherent and noncoherent communication systems operating in the impulsive atmospheric radio noise environment. The receiver is usually a maximum likelihood detector for white Gaussian interference and therefore has the form of a parallel bank of matched filters followed by decision circuitry. By employing a Poisson or generalized Shot noise model for the impulsive noise with a suitable probability density function (pdf), closed-form expressions and bounds of error probabilities for M-ary noncoherent and coherent amplitude-shift keying (ASK), phase-shift keying (PSK), and frequency-shift keying (FSK) systems are obtained and the results discussed. 相似文献