全文获取类型
收费全文 | 3323篇 |
免费 | 10篇 |
国内免费 | 5篇 |
专业分类
航空 | 1311篇 |
航天技术 | 1041篇 |
综合类 | 19篇 |
航天 | 967篇 |
出版年
2022年 | 15篇 |
2021年 | 37篇 |
2019年 | 16篇 |
2018年 | 183篇 |
2017年 | 134篇 |
2016年 | 116篇 |
2015年 | 44篇 |
2014年 | 111篇 |
2013年 | 137篇 |
2012年 | 118篇 |
2011年 | 167篇 |
2010年 | 131篇 |
2009年 | 193篇 |
2008年 | 192篇 |
2007年 | 126篇 |
2006年 | 74篇 |
2005年 | 102篇 |
2004年 | 96篇 |
2003年 | 106篇 |
2002年 | 83篇 |
2001年 | 117篇 |
2000年 | 36篇 |
1999年 | 53篇 |
1998年 | 61篇 |
1997年 | 42篇 |
1996年 | 43篇 |
1995年 | 80篇 |
1994年 | 61篇 |
1993年 | 37篇 |
1992年 | 47篇 |
1991年 | 10篇 |
1990年 | 19篇 |
1989年 | 41篇 |
1988年 | 11篇 |
1987年 | 17篇 |
1986年 | 16篇 |
1985年 | 70篇 |
1984年 | 56篇 |
1983年 | 48篇 |
1982年 | 42篇 |
1981年 | 82篇 |
1980年 | 25篇 |
1979年 | 16篇 |
1978年 | 14篇 |
1977年 | 17篇 |
1976年 | 13篇 |
1975年 | 13篇 |
1974年 | 11篇 |
1972年 | 13篇 |
1971年 | 11篇 |
排序方式: 共有3338条查询结果,搜索用时 22 毫秒
601.
Hugh S. Hudson 《Space Science Reviews》2011,158(1):5-41
This article broadly reviews our knowledge of solar flares. There is a particular focus on their global properties, as opposed
to the microphysics such as that needed for magnetic reconnection or particle acceleration as such. Indeed solar flares will
always remain in the domain of remote sensing, so we cannot observe the microscales directly and must understand the basic
physics entirely via the global properties plus theoretical inference. The global observables include the general energetics—radiation
in flares and mass loss in coronal mass ejections (CMEs)—and the formation of different kinds of ejection and global wave
disturbance: the type II radio-burst exciter, the Moreton wave, the EIT “wave”, and the “sunquake” acoustic waves in the solar
interior. Flare radiation and CME kinetic energy can have comparable magnitudes, of order 1032 erg each for an X-class event, with the bulk of the radiant energy in the visible-UV continuum. We argue that the impulsive
phase of the flare dominates the energetics of all of these manifestations, and also point out that energy and momentum in
this phase largely reside in the electromagnetic field, not in the observable plasma. 相似文献
602.
603.
V. V. Kalegaev W. O. Barinova I. N. Myagkova V. E. Eremeev D. A. Parunakyan M. D. Nguyen O. G. Barinov 《Cosmic Research》2018,56(1):32-37
An empirical model of the high-latitude boundary of the outer Earth’s radiation belt (ERB) has been presented, which is based on the measurement data of electron fluxes on the polar low-orbit CORONAS-Photon, Meteor-M1, and Meteor-M2 satellites. The boundary was determined by a sharp decrease to the background level of the flux of trapped electrons with energies of 100 or 200 keV in the polar part of the profile of the outer radiation belt. A numerical algorithm has been implemented to determine the time moment, when the fastest flux changes are recorded. The primary search was carried out, first, on 30 s averaged data, then repeated on data with a higher resolution. A functional dependence was obtained in order to approximate the obtained set of intersections of the boundary by elliptical curve. The empirical model constructed using the CORONAS-Photon measurement data in the epoch of anomalously low geomagnetic activity reflects the longitude structure of the high-latitude boundary of the outer radiation belt associated with the internal Earth’s magnetic field (MF), as well as its dependence on the universal time. Based on the data of intersections of the high-latitude boundary of the outer ERB (OERB) in the epoch of 2014–2016, the latitudinal shift of the boundary to the equator dependent on geomagnetic activity has been determined, as well as the nightside shift of the boundary due to the diurnal rotation of the Earth. 相似文献
604.
A weak but statistically reliable dependence of the diurnal activity of oscillations in the ionospheric Alfvén resonator on orientation of the interplanetary magnetic field ahead of the magnetospheric front has been detected based on observations of ULF oscillations at Sayan solar observatory Mondy of the Institute of Solar–Terrestrial Physics. The interpretation of the result has been proposed. The essence is that the electromagnetic fluctuations penetrate into the magnetosphere from the interplanetary environment and influence the ionospheric resonator. The formulation of the problem and the method of solving it are part of the broad program of the experimental and theoretical study of the influence of the interplanetary magnetic field on the oscillation regime of ULF oscillations of the magnetosphere. 相似文献
605.
R. C. Wiens D. S. Burnett C. M. Hohenberg A. Meshik V. Heber A. Grimberg R. Wieler D. B. Reisenfeld 《Space Science Reviews》2007,130(1-4):161-171
The Genesis mission returned samples of solar wind to Earth in September 2004 for ground-based analyses of solar-wind composition,
particularly for isotope ratios. Substrates, consisting mostly of high-purity semiconductor materials, were exposed to the
solar wind at L1 from December 2001 to April 2004. In addition to a bulk sample of the solar wind, separate samples of coronal
hole (CH), interstream (IS), and coronal mass ejection material were obtained. Although many substrates were broken upon landing
due to the failure to deploy the parachute, a number of results have been obtained, and most of the primary science objectives
will likely be met. These objectives include He, Ne, Ar, Kr, and Xe isotope ratios in the bulk solar wind and in different
solar-wind regimes, and 15N/14N and 18O/17O/16O to high precision. The greatest successes to date have been with the noble gases. Light noble gases from bulk solar wind
and separate solar-wind regime samples have now been analyzed. Helium results show clear evidence of isotopic fractionation
between CH and IS samples, consistent with simplistic Coulomb drag theory predictions of fractionation between the photosphere
and different solar-wind regimes, though fractionation by wave heating is also a possible explanation. Neon results from closed
system stepped etching of bulk metallic glass have revealed the nature of isotopic fractionation as a function of depth, which
in lunar samples have for years deceptively suggested the presence of an additional, energetic component in solar wind trapped
in lunar grains and meteorites. Isotope ratios of the heavy noble gases, nitrogen, and oxygen are in the process of being
measured. 相似文献
606.
V.?A.?Afanas’ev G.?L.?Degtyarev A.?S.?MeshchanovEmail author 《Russian Aeronautics (Iz VUZ)》2018,61(1):23-31
Real values of parameters for a space vehicle and its steering devices are specified by using the motion parameters measured in flight based on solving the differential equations of motion. 相似文献
607.
N.C Bissinger N.A Blagoveshchensky A.A Gubanov V.N Gusev V.P Starukhin N.V Voevodenko S.M Zadonsky 《Aerospace Science and Technology》1998,2(8):505-514
Results of a numerical (CFD) study of the influence of the forebody shape on local flow parameters at a bottom-mounted inlet entrance are presented. The free-stream Mach number is assumed to be 3.5–7.0. Some recommendations on forebody shape optimization are provided. Main characteristics of the air inlet are evaluated. 相似文献
608.
L.V. Nevzgodina E.N. Maximova Yu.A. Akatov 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1981,1(14):83-85
We have studied the effects of prolonged (up to 175 days) exposure of seeds to space flight factors, including primary cosmic radiation heavy ions. The data obtained evidence a significant fourfold increase ofs pontaneous mutagenesis in seeds both with regard to the total number of aberrant cells as well as the formation of single cells with multiple aberrations. Comparison of the present experiment with earlier works shows that the frequency of such aberrations increases with the duration of the flight. 相似文献
609.
W.D. Apel J.C. Arteaga-Velázquez K. Bekk M. Bertaina J. Blümer H. Bozdog I.M. Brancus E. Cantoni A. Chiavassa F. Cossavella K. Daumiller V. de Souza F. Di Pierro P. Doll R. Engel J. Engler M. Finger B. Fuchs D. Fuhrmann H.J. Gils R. Glasstetter C. Grupen A. Haungs D. Heck J.R. Hörandel D. Huber T. Huege K.-H. Kampert D. Kang H.O. Klages K. Link P. Łuczak M. Ludwig H.J. Mathes H.J. Mayer M. Melissas J. Milke B. Mitrica C. Morello J. Oehlschläger S. Ostapchenko N. Palmieri M. Petcu T. Pierog H. Rebel M. Roth H. Schieler S. Schoo F.G. Schröder O. Sima 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
610.
A. V. Shatina 《Cosmic Research》2002,40(2):163-177
We study the motion of a symmetrical satellite with a pair of flexible viscoelastic rods in a central Newtonian gravitational field. A restricted problem formulation is considered, when the satellite's center of mass moves along a fixed circular orbit. A small parameter is introduced which is inversely proportional to the stiffness of flexible elements. Another small parameter is equal to the ratio of the squared orbital angular velocity and the squared magnitude of the initial angular velocity of the satellite. In order to describe the satellite rotational motion relative to the center of mass, we use the canonical Andoyer variables. In the undisturbed formulation of the problem, i.e., at = 0 and = 0, these variables are the action–angle variables. Equations describing the evolution of motion are derived by an asymptotic method which combines the method of separating motions for systems with an infinite number of degrees of freedom and the Krylov–Bogolyubov method for systems with fast and slow variables. The manifolds of stationary motions are found, and their stability is investigated on the basis of equations in variations. Phase portraits are constructed which describe the rotational motion of a satellite at the stage of slow dissipative evolution. 相似文献