首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4767篇
  免费   8篇
  国内免费   10篇
航空   1927篇
航天技术   1494篇
综合类   20篇
航天   1344篇
  2022年   16篇
  2021年   48篇
  2019年   21篇
  2018年   212篇
  2017年   167篇
  2016年   138篇
  2015年   53篇
  2014年   145篇
  2013年   164篇
  2012年   155篇
  2011年   257篇
  2010年   215篇
  2009年   298篇
  2008年   306篇
  2007年   217篇
  2006年   100篇
  2005年   144篇
  2004年   137篇
  2003年   148篇
  2002年   109篇
  2001年   165篇
  2000年   62篇
  1999年   79篇
  1998年   84篇
  1997年   63篇
  1996年   77篇
  1995年   104篇
  1994年   85篇
  1993年   52篇
  1992年   70篇
  1991年   18篇
  1990年   30篇
  1989年   66篇
  1988年   21篇
  1987年   31篇
  1986年   32篇
  1985年   118篇
  1984年   78篇
  1983年   66篇
  1982年   64篇
  1981年   119篇
  1980年   33篇
  1979年   21篇
  1978年   19篇
  1977年   25篇
  1976年   20篇
  1975年   24篇
  1974年   23篇
  1972年   15篇
  1971年   14篇
排序方式: 共有4785条查询结果,搜索用时 593 毫秒
921.
On the basis of measurements made at Japanese magnetic stations and using GPS satellites for the 12 months of 2003, a comparison of simultaneous variations of three components of the magnetic field and total electron content (TEC) was carried out in the range of the planetary waves period. The correlation analysis has shown that almost synchronous variations exist within this range of periods at the ground-based magnetometer stations and in the TEC measurements both during strong magnetic disturbances and in quiet periods. The strong magnetic disturbances could be considered as a possible independent source of ionospheric variations within the planetary waves range, while the accompanying ionospheric storms could be a possible factor changing the conductivity of the lower ionosphere plasma. In quiet periods, the correlation of magnetic variations and disturbances in TEC is caused by the direct impact of atmospheric planetary waves on the lower ionosphere and can be related to variations of ionospheric currents due to the dynamo mechanism.  相似文献   
922.
The low-frequency component is investigated in the data of measurements performed onboard the Foton M-2 satellite with the three-component accelerometer TAS-3. Investigations consisted in comparison of this component with its calculated analog found from a reconstruction of the satellite’s attitude motion. The influence of the Earth’s magnetic field on the accelerometer readings is discovered by way of spectral analysis of the functions representing the results of determining the low-frequency microacceleration by two methods. After making correction for this influence, the results obtained by these two methods coincided within a root-mean-square error of less than 10?6 m/s2.  相似文献   
923.
In this paper we consider the fluxes of protons in the energy range from 30 keV to 140 MeV recorded by instruments onboard the Russian satellites KORONAS-F and UNIVERSITETSKII and on the American satellites GOES-11 and NOAA-17. In order to estimate the reliability of the obtained data, the comparison of measurements of separate energy channels of these instruments between themselves is performed. Experimental fluxes of trapped protons are compared with the fluxes predicted by the AP8 model.  相似文献   
924.
The results of simultaneous analysis of plasma and magnetic field characteristics measured on the INTERBALL/Tail Probe, WIND and Geotail satellites on March 2, 1996, are presented. During these observations the INTERBALL/Tail Probe crossed the low-latitude boundary layer, and the WIND and Geotail satellites measured the solar wind’s and magnetosheath’s parameters, respectively. The plasma and magnetic field characteristics in these regions have been compared. The data of the Corall, Electron, and MIF instruments on the INTERBALL/Tail Probe satellite are analyzed. Fluctuations of the magnetic field components and plasma velocity in the solar wind and magnetosheath, measured onboard the WIND and Geotail satellites, are compared. The causes resulting in appearance of plasma jet flows in the low-latitude boundary layer are analyzed. The amplitude of magnetic field fluctuations in the magnetosheath for a studied magnetosphere boundary crossing is shown to exceed the magnetic field value below the magnetopause near the cusp. The possibility of local violation of pressure balance on the magnetopause is discussed, as well as penetration of magnetosheath plasma into the magnetosphere, as a result of magnetic field and plasma flux fluctuations in the magnetosheath.  相似文献   
925.
A method for representing thermodynamic and thermophysical functions is presented; the functions make it possible to simulate thermal and gasodynamic processes in powerplants that use different individual substances or their mixtures as a working fluid. The method also involves consideration of real gas properties.  相似文献   
926.
The numerical calculations of flows in conical and contoured nozzles with slots in the supersonic part that operate under overexpansion conditions are presented. The calculations were made with the aid of the authors’ algorithm and program of simulating turbulent two-dimensional (axisymmetric) flows of a viscous heat-conducting gas. The results of computational investigations of tractive slot nozzle characteristics and the amount of combustion product leakage from an annular slot depending on the flight altitude are given. It is shown that the flight altitude at which the gas flow through the annular slot is “chocked” depends on its size and location in the supersonic nozzle part.  相似文献   
927.
Conduction and displacement currents, and their sum the Maxwell current, generated over a thunderstorm (TS) with recurrent lightning discharges are investigated theoretically. The aim is to study better the influence of different factors on these currents, which form the link between thunderstorms and the ionosphere in the global atmospheric electrical circuit. The factors studied concern the thunderstorm characteristics (the charge separation current, and the lightning discharge parameters), as well as the atmospheric and cloud conductivity. Some of these factors may show long-term changes with the 11-year solar cycle, possibly realized through an inverse dependence of the cosmic ray flux on solar activity. Earlier investigations have suggested that the lightning-related charge redistribution and subsequent relaxation, rather than the high intensity current, is mainly the source of the energy coupled to the ionosphere. With respect to this, a quasi-electrostatic analytical model is proposed, based on Maxwell’s equations. The currents are generated by a TS modeled as a positive vertical dipole with charges which are first accumulated and then destroyed by lightning. Our computations show that the mean and peak values of the conduction and total Maxwell currents to the ionosphere depend significantly on the charge moment change. The mean currents are also sensitive to the reduction of the conductivity in thunderclouds. Small variations of the stratospheric conductivity (20% at geomagnetic latitude 40° and 40–50% at 55°) with the solar activity do not influence the currents to the ionosphere very much.  相似文献   
928.
The effects of galactic and solar cosmic rays (CR) in the middle atmosphere are considered in this work. A new analytical approach for CR ionization by protons and nuclei with charge Z in the lower ionosphere and middle atmosphere is developed in this paper. For this purpose the ionization losses (dE/dh) according to the Bohr–Bethe–Bloch formula for the energetic charged particles are approximated in three different energy intervals. More accurate expressions for energy decrease E(h) and electron production rate profiles q(h) are derived. The obtained formulas allow comparatively easy computer programming. The integrand in q(h) gives the possibility for application of adequate numerical methods – such as Romberg method or Gauss quadrature, for the solution of the mathematical problem. On this way the process of interaction of cosmic ray particles with the upper, middle and lower atmosphere will be described much more realistically. Computations for cosmic ray ionization in the middle atmosphere are made. The full CR composition is taken into account: protons, Helium (α-particles), light L, medium M, heavy H and very heavy VH group of nuclei.  相似文献   
929.
The study addresses interaction of bacteria and phages in the host–parasite system in batch and continuous cultures. The study system consists of the auxotrophic strain of BrevibacteriumBrevibacterium sp. 22L – and the bacteriophage of Brevibacterium sp., isolated from the soil by the enrichment method.
1.
Closed system. In the investigation of the relationship between the time of bacterial lysis and multiplicity of phage infection it has been found that at a lower phage amount per cell it takes a longer time for the lysis of the culture to become discernible. Another important factor determining cytolysis in liquid medium is the physiological state of bacterial population. Specific growth rate of bacteria at the moment of phage infection has been chosen as an indicator of the physiological state of bacteria. It has been shown that the shortest latent period and the largest output of the phage are observed during the logarithmic growth phase of bacteria grown under favorable nutrient conditions. In the stationary phase, bacterial cells become “a bad host” for the phage, whose reproduction rate decreases, and the lysis either slows down significantly or does not occur at all.  相似文献   
930.
PAMELA is a satellite-borne experiment that has been launched on June 15th, 2006. It is designed to make long duration measurements of cosmic radiation over an extended energy range. Specifically, PAMELA is able to measure the cosmic ray antiproton and positron spectra over the largest energy range ever achieved and will search for antinuclei with unprecedented sensitivity. Furthermore, it will measure the light nuclear component of cosmic rays and investigate phenomena connected with solar and earth physics. The apparatus consists of: a time of flight system, a magnetic spectrometer, an electromagnetic imaging calorimeter, a shower tail catcher scintillator, a neutron detector and an anticoincidence system. In this work a study of the PAMELA capabilities to detect electrons is presented. The Jovian magnetosphere is a powerful accelerator of electrons up to several tens of MeV as observed at first by Pioneer 10 spacecraft (1973). The propagation of Jovian electrons to Earth is affected by modulation due to Corotating Interaction Regions (CIR). Their flux at Earth is, moreover, modulated because every 13 months Earth and Jupiter are aligned along the average direction of the Parker spiral of the Interplanetary Magnetic Field.PAMELA will be able to measure the high energy tail of the Jovian electrons in the energy range from 50 up to 130 MeV. Moreover, it will be possible to extract the Jovian component reaccelerated at the solar wind termination shock (above 130 MeV up to 2 GeV) from the galactic flux.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号