首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6522篇
  免费   9篇
  国内免费   13篇
航空   2852篇
航天技术   2124篇
综合类   26篇
航天   1542篇
  2021年   55篇
  2019年   32篇
  2018年   214篇
  2017年   167篇
  2016年   143篇
  2015年   59篇
  2014年   153篇
  2013年   203篇
  2012年   195篇
  2011年   305篇
  2010年   254篇
  2009年   344篇
  2008年   362篇
  2007年   250篇
  2006年   134篇
  2005年   194篇
  2004年   187篇
  2003年   199篇
  2002年   145篇
  2001年   206篇
  2000年   86篇
  1999年   126篇
  1998年   151篇
  1997年   104篇
  1996年   102篇
  1995年   178篇
  1994年   169篇
  1993年   90篇
  1992年   106篇
  1991年   40篇
  1990年   58篇
  1989年   100篇
  1988年   39篇
  1987年   39篇
  1986年   51篇
  1985年   177篇
  1984年   149篇
  1983年   124篇
  1982年   108篇
  1981年   208篇
  1980年   49篇
  1979年   45篇
  1978年   45篇
  1977年   41篇
  1976年   40篇
  1975年   44篇
  1974年   36篇
  1973年   34篇
  1972年   50篇
  1971年   27篇
排序方式: 共有6544条查询结果,搜索用时 15 毫秒
451.
This is the first study of the isotopic composition of solar wind helium with the SWICS time-of flight mass spectrometer. Although the design of SWICS is not optimized to measure3He abundances precisely,4He/3He flux ratios can be deduced from the data. The long term ratio is 2290±200, which agrees with the results obtained with the ICI magnetic mass spectrometer on ISEE-3 and with the Apollo SWC foil experiments.The ULYSSES spacecraft follows a trajectory which is ideal for the study of different solar wind types. During one year, from mid-1992 to mid-1993, it was in a range of heliographic latitudes where a recurrent fast stream from the southern polar coronal hole was observed every solar rotation. Solar wind bulk velocities ranged from 350 km/s to 950 km/s which would, in principle allow us to identify velocity-correlated compositional variations. Our investigation of solar wind helium, however, shows an isotopic ratio which does not depend on the solar wind speed.  相似文献   
452.
We review work on diffusion coefficients of energetic particles with an attempt to extract implications on their behaviour at high latitudes. In the ecliptic plane results from solar energetic particle propagation between the Sun and about 5 AU can be described by an effective radial mean free path r which is approximately constant as a function of distancer. When particle propagation in three dimensions in the heliosphere is considered it is not sufficient to consider r only. Jovian electrons can be used as probes to determine the parameters of three-dimensional diffusion. In the polar regions diffusion is dominated by its parallel component. Some predictions how should vary with latitude are discussed. For different choices of this variation we present expectations for intensity-time profiles of solar particle events during the Ulysses polar passages.  相似文献   
453.
Cole  David G. 《Space Science Reviews》2003,107(1-2):295-302
Terrestrial technology is now, and increasingly, sensitive to space weather. Most space weather is caused by solar storms and the resulting changes to the Earth's radiation environment and the magnetosphere. The Sun as the driver of space weather is under intense observation but remains to be adequately modelled. Recent spacecraft measurements are greatly improving models of solar activity, the interaction of the solar wind with the magnetosphere, and models of the radiation belts. In-situ data updates the basic magnetospheric model to provide specific details of high-energy electron flux at satellite orbits. Shock wave effects at the magnetopause can also be coarsely predicted. However, the specific geomagnetic effects at ground level depend on the calculation of magnetic and electric fields and further improvements are needed. New work on physical models is showing promise of raising geomagnetic and ionospheric predictability above the synoptic climatological level. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
454.
A magnetohydrodynamic model of the solar wind flow is constructed using a kinematic approach. It is shown that a phenomenological conductivity of the solar wind plasma plays a key role in the forming of the interplanetary magnetic field (IMF) component normal to the ecliptic plane. This component is mostly important for the magnetospheric dynamics which is controlled by the solar wind electric field. A simple analytical solution for the problem of the solar wind flow past the magnetosphere is presented. In this approach the magnetopause and the Earth's bow shock are approximated by the paraboloids of revolution. Superposition of the effects of the bulk solar wind plasma motion and the magnetic field diffusion results in an incomplete screening of the IMF by the magnetopause. It is shown that the normal to the magnetopause component of the solar wind magnetic field and the tangential component of the electric field penetrated into the magnetosphere are determined by the quarter square of the magnetic Reynolds number. In final, a dynamic model of the magnetospheric magnetic field is constructed. This model can describe the magnetosphere in the course of the severe magnetic storm. The conditions under which the magnetospheric magnetic flux structure is unstable and can drive the magnetospheric substorm are discussed. The model calculations are compared with the observational data for September 24–26, 1998 magnetic storm (Dst min=−205 nT) and substorm occurred at 02:30 UT on January 10, 1997. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
455.
Frey  H.U.  Mende  S.B.  Immel  T.J.  Gérard  J.-C.  Hubert  B.  Habraken  S.  Spann  J.  Gladstone  G.R.  Bisikalo  D.V.  Shematovich  V.I. 《Space Science Reviews》2003,109(1-4):255-283
Direct imaging of the magnetosphere by instruments on the IMAGE spacecraft is supplemented by simultaneous observations of the global aurora in three far ultraviolet (FUV) wavelength bands. The purpose of the multi-wavelength imaging is to study the global auroral particle and energy input from the magnetosphere into the atmosphere. This paper describes the method for quantitative interpretation of FUV measurements. The Wide-Band Imaging Camera (WIC) provides broad band ultraviolet images of the aurora with maximum spatial resolution by imaging the nitrogen lines and bands between 140 and 180 nm wavelength. The Spectrographic Imager (SI), a dual wavelength monochromatic instrument, images both Doppler-shifted Lyman-α emissions produced by precipitating protons, in the SI-12 channel and OI 135.6 nm emissions in the SI-13 channel. From the SI-12 Doppler shifted Lyman-α images it is possible to obtain the precipitating proton flux provided assumptions are made regarding the mean energy of the protons. Knowledge of the proton (flux and energy) component allows the calculation of the contribution produced by protons in the WIC and SI-13 instruments. Comparison of the corrected WIC and SI-13 signals provides a measure of the electron mean energy, which can then be used to determine the electron energy flux. To accomplish this, reliable emission modeling and instrument calibrations are required. In-flight calibration using early-type stars was used to validate the pre-flight laboratory calibrations and determine long-term trends in sensitivity. In general, very reasonable agreement is found between in-situ measurements and remote quantitative determinations.  相似文献   
456.
Moore  T.E.  Collier  M.R.  Fok  M.-C.  Fuselier  S.A.  Khan  H.  Lennartsson  W.  Simpson  D.G.  Wilson  G.R.  Chandler  M.O. 《Space Science Reviews》2003,109(1-4):351-371
Development of the low energy neutral atom (LENA) imager was originally motivated by a need to remotely sense plasma heating in the topside ionosphere, with the goal of greatly enhanced temporal resolution of an otherwise familiar phenomenon. During ground test and calibration, the LENA imager was found to respond to neutral atoms with energies well above its nominal energy range of 10–750 eV, up to at least 3–4 keV, owing to sputtering interactions with its conversion surface. On orbit, LENA has been found to respond to a ubiquitous neutral atom component of the solar wind, to the neutral atoms formed by magnetosheath interactions with the geocorona during periods of high solar wind pressure, and to the interstellar neutral atoms flowing through the heliosphere during the season of maximal relative wind velocity between spacecraft and interstellar medium. LENA imaging has thus emerged as a promising new tool for studying the interplanetary medium and its interaction with the magnetosphere, in addition to the ionospheric heating and outflow that result from this interaction. LENA emissions from the ionosphere consist of a fast component that can be observed at high altitudes, and slower components that evidently create a quasi-trapped extended superthermal exosphere. The more energetic emissions are responsive to solar wind energy inputs on time scales of a few minutes.  相似文献   
457.
We present results derived from the analysis of an equatorial streamer structure as observed by the UVCS instrument aboard SOHO. From observations of the H I Lyα and Lyβ lines we infer the density and temperature of the plasma. We develop a preliminary axisymmetric, magnetostatic model of the corona which includes the effects of gas pressure gradients on the magnetic structure. We infer a coronal plasma β > 1 in the closed field regions and near the cusp of the streamer. We add to the model a parallel velocity field assuming mass flux conservation along magnetic flux tubes. We then compute the Lyα emissivity and the line-of-sight integrals to obtain images of Lyα intensity, taking into account projection effects and Doppler dimming. The images we obtain from this preliminary model are in good general agreement with the UVCS observations, both qualitatively and quantitatively. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
458.
The Cassini visual and infrared mapping spectrometer (VIMS) investigation is a multidisciplinary study of the Saturnian system. Visual and near-infrared imaging spectroscopy and high-speed spectrophotometry are the observational techniques. The scope of the investigation includes the rings, the surfaces of the icy satellites and Titan, and the atmospheres of Saturn and Titan. In this paper, we will elucidate the major scientific and measurement goals of the investigation, the major characteristics of the Cassini VIMS instrument, the instrument calibration, and operation, and the results of the recent Cassini flybys of Venus and the Earth–Moon system.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
459.
The Cassini-Huygens Cosmic Dust Analyzer (CDA) is intended to provide direct observations of dust grains with masses between 10−19 and 10−9 kg in interplanetary space and in the jovian and saturnian systems, to investigate their physical, chemical and dynamical properties as functions of the distances to the Sun, to Jupiter and to Saturn and its satellites and rings, to study their interaction with the saturnian rings, satellites and magnetosphere. Chemical composition of interplanetary meteoroids will be compared with asteroidal and cometary dust, as well as with Saturn dust, ejecta from rings and satellites. Ring and satellites phenomena which might be effects of meteoroid impacts will be compared with the interplanetary dust environment. Electrical charges of particulate matter in the magnetosphere and its consequences will be studied, e.g. the effects of the ambient plasma and the magnetic field on the trajectories of dust particles as well as fragmentation of particles due to electrostatic disruption.The investigation will be performed with an instrument that measures the mass, composition, electric charge, speed, and flight direction of individual dust particles. It is a highly reliable and versatile instrument with a mass sensitivity 106 times higher than that of the Pioneer 10 and 11 dust detectors which measured dust in the saturnian system. The Cosmic Dust Analyzer has significant inheritance from former space instrumentation developed for the VEGA, Giotto, Galileo, and Ulysses missions. It will reliably measure impacts from as low as 1 impact per month up to 104 impacts per second. The instrument weighs 17 kg and consumes 12 W, the integrated time-of-flight mass spectrometer has a mass resolution of up to 50. The nominal data transmission rate is 524 bits/s and varies between 50 and 4192 bps.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
460.
The Cassini Imaging Science Subsystem (ISS) is the highest-resolution two-dimensional imaging device on the Cassini Orbiter and has been designed for investigations of the bodies and phenomena found within the Saturnian planetary system. It consists of two framing cameras: a narrow angle, reflecting telescope with a 2-m focal length and a square field of view (FOV) 0.35 across, and a wide-angle refractor with a 0.2-m focal length and a FOV 3.5 across. At the heart of each camera is a charged coupled device (CCD) detector consisting of a 1024 square array of pixels, each 12 μ on a side. The data system allows many options for data collection, including choices for on-chip summing, rapid imaging and data compression. Each camera is outfitted with a large number of spectral filters which, taken together, span the electromagnetic spectrum from 200 to 1100 nm. These were chosen to address a multitude of Saturn-system scientific objectives: sounding the three-dimensional cloud structure and meteorology of the Saturn and Titan atmospheres, capturing lightning on both bodies, imaging the surfaces of Saturn’s many icy satellites, determining the structure of its enormous ring system, searching for previously undiscovered Saturnian moons (within and exterior to the rings), peering through the hazy Titan atmosphere to its yet-unexplored surface, and in general searching for temporal variability throughout the system on a variety of time scales. The ISS is also the optical navigation instrument for the Cassini mission. We describe here the capabilities and characteristics of the Cassini ISS, determined from both ground calibration data and in-flight data taken during cruise, and the Saturn-system investigations that will be conducted with it. At the time of writing, Cassini is approaching Saturn and the images returned to Earth thus far are both breathtaking and promising.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号