全文获取类型
收费全文 | 3199篇 |
免费 | 10篇 |
国内免费 | 5篇 |
专业分类
航空 | 1192篇 |
航天技术 | 1041篇 |
综合类 | 19篇 |
航天 | 962篇 |
出版年
2022年 | 15篇 |
2021年 | 37篇 |
2019年 | 16篇 |
2018年 | 128篇 |
2017年 | 102篇 |
2016年 | 116篇 |
2015年 | 41篇 |
2014年 | 111篇 |
2013年 | 135篇 |
2012年 | 118篇 |
2011年 | 158篇 |
2010年 | 127篇 |
2009年 | 192篇 |
2008年 | 190篇 |
2007年 | 122篇 |
2006年 | 74篇 |
2005年 | 101篇 |
2004年 | 94篇 |
2003年 | 106篇 |
2002年 | 83篇 |
2001年 | 113篇 |
2000年 | 36篇 |
1999年 | 53篇 |
1998年 | 61篇 |
1997年 | 42篇 |
1996年 | 43篇 |
1995年 | 80篇 |
1994年 | 61篇 |
1993年 | 34篇 |
1992年 | 45篇 |
1991年 | 10篇 |
1990年 | 19篇 |
1989年 | 41篇 |
1988年 | 11篇 |
1987年 | 17篇 |
1986年 | 16篇 |
1985年 | 70篇 |
1984年 | 56篇 |
1983年 | 48篇 |
1982年 | 42篇 |
1981年 | 82篇 |
1980年 | 25篇 |
1979年 | 16篇 |
1978年 | 14篇 |
1977年 | 17篇 |
1976年 | 13篇 |
1975年 | 13篇 |
1974年 | 11篇 |
1972年 | 13篇 |
1971年 | 11篇 |
排序方式: 共有3214条查询结果,搜索用时 14 毫秒
161.
J.R. Cecatto H.S. Sawant F.C.R. Fernandes V. Krishan J.A.C.F. Neri J.C. Moraes Filho 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2003,32(12):2533-2537
Type-III bursts are signatures of the electron beams accelerated during the solar flares, their observation and investigation provide information of the acceleration processes, the characteristics of the exciting agent and the acceleration site. The Brazilian Solar Spectroscope (BSS), in operation at INPE, Brazil, have recorded type-III radio bursts in decimetric range (2050–2250 MHz) with high time resolution of 20 ms. Decimetric reverse drift bursts are possibly generated in a dense loop by electron beams travelling towards the photosphere. Hence their time profiles should carry signatures of the density inhomogenities in the loop. Here the temporal and spectral characteristics of decimetric type-III bursts are presented. 相似文献
162.
V Bluem F Paris 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2003,31(1):77-86
Water is the essential precondition of life in general and also for the establishment of a Martian base suitable for long duration stays of humans. It is not yet proven if there is indeed a "frozen ocean" under the surface of Mars but if this could be verified it would open innovative aspects for the construction of bioregenerative life support systems (BLSS). In a general concept higher plants will play the predominant role in a Martian BLSS. It is not clear, however, how these will grow and bring seed in reduced gravity and there may be differences in the productivity in comparison to Earth conditions. Therefore, organisms which are already adapted to low gravity conditions, namely non-gravitropic aquatic plants and also aquatic animals may be used to enhance the functionality of the Martian BLSS as a whole. It has been shown already with the so-called C.E.B.A.S. MINIMODULE in the STS-89 and STS-90 spaceshuttle missions that the water plant Ceratophyllum demersum has an undisturbed and high biomass production under space conditions. Moreover, the teleost fish species Xiphophorus helleri adapted easily to the micro-g environment and maintained its normal reproductive functions. Based on this findings a possible scenario is presented in which aquatic plant production modules and combined animal-plant production systems may be used for human food production and water and air regeneration in a Martian base. 相似文献
163.
Induced abnormality in Mir- and Earth grown Super Dwarf wheat. 总被引:4,自引:0,他引:4
D L Bubenheim J Stieber W F Campbell F B Salisbury M Levinski V Sytchev I Podolsky L Chernova I Pdolsky 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2003,31(1):229-234
Super-dwarf wheat grown on the Mir space station using the Svet "Greenhouse" exhibited morphological, metabolic and reproductive abnormalities compared with Earth-grown wheat. Of prominent importance were the abnormalities associated with reproductive ontogeny and the total absence of seed formation on Mir. Changes in the apical meristem associated with transition from the vegetative phase to floral initiation and development of the reproductive spike were all typical of 'Super-Dwarf' wheat up to the point of anthesis. Observation of ruptured anthers from the Mir-grown plants revealed what appeared to be normally developed pollen. These pollen gains, however, contained only one nuclei, while normal viable pollen is tri-nucleate. A potentially important difference in the flight experiment, compared with ground reference studies, was the presence of a high level of atmospheric ethylene (1,200 ppb). Ground studies conducted by exposing 'Super-Dwarf' wheat to ethylene just prior to anthesis resulted in manifestation of the same abnormalities observed in the space flight samples. 相似文献
164.
High temperature effect on microflora of radish root-inhabited zone and nutrient solutions for radish growth. 总被引:2,自引:0,他引:2
E V Borodina L S Tirranen 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2003,31(1):235-240
The effect of high temperatures (35 and 45 degrees C) on microflora of the root zone of radish plants grown in phytotron was evaluated by the response of microorganisms from 9 indicator groups. Phytotron air temperature elevated to 35 degrees C for 20 hours caused no significant changes in qualitative and quantitative composition of the root microflora in experimental plants. By the end of the experiment, the species diversity of microflora had changed. The amount of phytopathogenic microorganisms decreased which can be interpreted as more stable co-existence of microflora with plants. The numbers of microbes from other indicator groups was in dynamic equilibrium. The plants' condition did not deteriorate either. Exposure to the temperature of 45 degrees C for 7 hours have been found to change the numbers and species diversity in the radish root zone microflora. The microorganisms were observed to increase their total numbers at the expense of certain indicator groups. Bacteria increased spore forms at the stage of spores. Colon bacillus bacteria of increased their numbers by the end of experiment by an order. By the end of experiment the roots of experiment plants had microscopic fungi from Mucor, Aspergillus, Trichoderma, Cladosporium genera. The observed changes in the microbial complex seem to be associated with the changes of root emissions and general deterioration of the plants' condition. It is suggested that the response of the microorganisms can be indicative of the condition of plants under investigation. 相似文献
165.
V Blum 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2003,31(7):1683-1691
The Closed Equilibrated Biological Aquatic System (C.E.B.A.S.) is an artificial aquatic ecosystem which contains teleost fishes, water snails, ammonia oxidizing bacteria and edible non-gravitropic water plants. It serves as a model for aquatic food production modules which are not seriously affected by microgravity and other space conditions. Its space flight version, the so-called C.E.B.A.S. MINI-MODULE was already successfully tested in the STS-89 and STS-90 (NEUROLAB) missions. It will be flown a third time in space with the STS-107 mission in January 2003. All results obtained so far in space indicate that the basic concept of the system is more than suitable to drive forward its development. The C.E.B.A.S. MINI-MODULE is located within a middeck locker with limited space for additional components. These technical limitations allow only some modifications which lead to a maximum experiment time span of 120 days which is not long enough for scientifically essential multi-generation-experiments. The first necessary step is the development of "harvesting devices" for the different organisms. In the limited space of the plant bioreactor a high biomass production leads to self-shadowing effects which results in an uncontrolled degradation and increased oxygen consumption by microorganisms which will endanger the fishes and snails. It was shown already that the latter reproduce excellently in space and that the reproductive functions of the fish species are not affected. Although the parent-offspring-cannibalism of the ovoviviparous fish species (Xiphophorus helleri) serves as a regulating factor in population dynamics an uncontrolled snail reproduction will also induce an increased oxygen consumption per se and a high ammonia concentration in the water. If harvesting locks can be handled by astronauts in, e. g., 4-week intervals their construction is not very difficult and basic technical solutions are already developed. The second problem is the feeding of the animals. Although C.E.B.A.S.-based aquaculture modules are designed to be closed food loop systems (edible herbivorous fish species and edible water plants) which are already verified on Earth this will not be possible in space without devices in which the animals are fed from a food storage. This has to be done at least once daily which would waste too much crew time when done by astronauts. So, the development of a reliable automated food dispenser has highest priority. Also in this case basic technical solutions are already elaborated. The paper gives a comprehensive overview of the proposed further C.E.B.A.S.-based development of longer-term duration aquatic food production modules. 相似文献
166.
描述并确定具有明显纹理粗糙表面均方根斜率的光散射技术(均方根斜率是联合表面轮廓高度和波长特性的混合参数)。称为散射光锥法(The scattered light-conemethod)的该技术是基于激光角散射检测阵列(DALLAS——Defector Array for Laser LishtAngular Scattering),它用于测量粗糙表面散射光角分布的仪器。均方根斜率是从DALLAS光散射图象的角宽得到的。一般可以发现角宽(即估计的均方根斜率)对光的入射角和散射角变化相当大时是不敏感的。这些结果与表面材料无关,并且对正弦和随机粗糙表面都是有效的。介绍了散射光锥法的测量原理、实验、数据分析和几点结论。 相似文献
167.
V D Kern S Bhattacharya R N Bowman F M Donovan C Elland T F Fahlen B Girten M Kirven-Brooks K Lagel G B Meeker O Santos 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2001,27(5):1023-1030
During the construction phase of the International Space Station (ISS), early flight opportunities have been identified (including designated Utilization Flights, UF) on which early science experiments may be performed. The focus of NASA's and other agencies' biological studies on the early flight opportunities is cell and molecular biology; with UF-1 scheduled to fly in fall 2001, followed by flights 8A and UF-3. Specific hardware is being developed to verify design concepts, e.g., the Avian Development Facility for incubation of small eggs and the Biomass Production System for plant cultivation. Other hardware concepts will utilize those early research opportunities onboard the ISS, e.g., an Incubator for sample cultivation, the European Modular Cultivation System for research with small plant systems, an Insect Habitat for support of insect species. Following the first Utilization Flights, additional equipment will be transported to the ISS to expand research opportunities and capabilities, e.g., a Cell Culture Unit, the Advanced Animal Habitat for rodents, an Aquatic Facility to support small fish and aquatic specimens, a Plant Research Unit for plant cultivation, and a specialized Egg Incubator for developmental biology studies. Host systems (Figure 1A, B: see text), e.g., a 2.5 m Centrifuge Rotor (g-levels from 0.01-g to 2-g) for direct comparisons between g and selectable g levels, the Life Sciences Glovebox for contained manipulations, and Habitat Holding Racks (Figure 1B: see text) will provide electrical power, communication links, and cooling to the habitats. Habitats will provide food, water, light, air and waste management as well as humidity and temperature control for a variety of research organisms. Operators on Earth and the crew on the ISS will be able to send commands to the laboratory equipment to monitor and control the environmental and experimental parameters inside specific habitats. Common laboratory equipment such as microscopes, cryo freezers, radiation dosimeters, and mass measurement devices are also currently in design stages by NASA and the ISS international partners. 相似文献
168.
I.L. Babich V.F. BoretskijA.N. Veklich R.V. Semenyshyn 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
Optical emission and linear laser absorption spectroscopy techniques were used in investigation of plasma with copper and silver admixture. The method of selection of spectral lines and spectroscopic data with the aim of diagnostics of multicomponent air plasma with two metal vapors admixture was developed. Energy level populations behavior on the Boltzmann plot were used for Cu I and Ag I spectroscopic data selection. In this way the selection of spectroscopic data for some of Cu I and Ag I lines was realized. Stark broadening parameters of Cu I and Ag I were examined. Experimentally obtained temperature and electron density radial distributions were used in the calculation of plasma composition in the assumption of local thermodynamic equilibrium. Linear laser absorption spectroscopy was used to examine the state of plasma. 相似文献
169.
R.V. Semenyshyn A.N. VeklichI.L. Babich V.F. Boretskij 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
Plasma of the free burning electric arc between Ag–SnO2–ZnO composite electrodes as well as brass electrodes were investigated. The plasma temperature distributions were obtained by Boltzmann plot method involving Cu I, Ag I or Zn I spectral line emissions. The electron density distributions were obtained from the width and from absolute intensity of spectral lines. The laser absorption spectroscopy was used for measurement of copper atom concentration in plasma. Plasma equilibrium composition was calculated using two independent groups of experimental values (temperature and copper atom concentration, temperature and electron density). It was found that plasma of the free burning electric arc between brass electrodes is in local thermodynamical equilibrium. The experimental verification of the spectroscopic data of Zn I spectral lines was carried out. 相似文献
170.
C. Mahesh Satya Prakash V. SathiyamoorthyR.M. Gairola 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
In this paper, an improved Kalpana-1 infrared (IR) based rainfall estimation algorithm, specific to Indian summer monsoon region is presented. This algorithm comprises of two parts: (i) development of Kalpana-1 IR based rainfall estimation algorithm with improvement for orographic warm rain underestimation generally suffered by IR based rainfall estimation methods and (ii) cooling index to take care of the growth and decay of clouds and thereby improving the precipitation estimation. 相似文献