An X, Y, Z Kalman tracking filter is described and its steady state characteristics are analytically determined when the radar sensor meaures range, bearing, and elevation (?, ?, ?) at uniform intervals of time, T seconds. The relationship between the quantities measured by the sensor (?, ?,?) and the Cartesian coordinate system (X, Y, Z) is explicitly considered. 相似文献
A new procedure for restoration of the plasma inhomogeneities with improved resolution is suggested. The procedure deals with the double weighted Fourier transform (DWFT) of the observed wavefield in coordinates of both receivers = (x, y) and sources 0 = (x0, y0) [1]. Phase increments between the sources and receivers, being found from DWFT representation, can be used for extracting information on small perturbations of the dielectric constant ~(, z) in a way similar to traditional radio tomography. The resulting resolution of the method is close to the diffraction limit = h/D in the horizontal direction and z = (h/D)2 in the vertical direction, where h is the height of inhomogeneities and D is the length of the ground-based receiving system. 相似文献
The case of data fusion of sensors dissimilar in their measurement/tracking errors is considered. It is shown that the fused track performance is similar whether the sensor data are fused at the track level or at the measurement level. The case of a cluster of targets, resolved by one sensor but not the other, is also considered. Under certain conditions the fused track may perform worse than the worst of the sensors. A remedy to this problem through modifications of the association algorithm is presented 相似文献
A method for representing thermodynamic and thermophysical functions is presented; the functions make it possible to simulate thermal and gasodynamic processes in powerplants that use different individual substances or their mixtures as a working fluid. The method also involves consideration of real gas properties. 相似文献
In this article we address several criticisms of Petschek-type reconnection models which have recently been raised by Heikkila. We discuss features of the time-dependent Petschek-type models in the context of the solar wind-magnetosphere interaction, and point out that such models can incorporate and reproduce observed features at the magnetopause, such as plasma jets and erosion of the current sheet. We argue that some of Heikkila's criticisms can be attributed to weaknesses in the analysis due to incomplete experimental information, rather than to flaws in the concept of reconnection per se; in this category we include the question of which instability leads to the localised breakup of the magnetopause current sheet. Other criticisms are based on an adherence to steady-state models, and cannot be sustained within the extended time-dependent theory. We discuss, for example, how the time-dependent model can provide a consistent picture of how energy from the incoming solar wind is transferred and converted as it enters the magnetosphere. 相似文献
In the present work we assess the stable and transient antiparticle content of planetary magnetospheres, and subsequently we consider their capture and application to high delta-v space propulsion. We estimate the total antiparticle mass contained within the Earth’s magnetosphere to assess the expediency of such usage. Using Earth’s magnetic field region as an example, we have considered the various source mechanisms that are applicable to a planetary magnetosphere, the confinement duration versus transport processes, and the antiparticle loss mechanisms. We have estimated the content of the trapped population of antiparticles magnetically confined following production in the exosphere due to nuclear interactions between high energy cosmic rays (CR) and constituents of the residual planetary upper atmosphere.The galactic antiprotons that directly penetrate into the Earth’s magnetosphere are themselves secondary by its nature, i.e. produced in nuclear reactions of the cosmic rays passing through the interstellar matter. These antiproton fluxes are modified, dependent on energy, when penetrating into the heliosphere and subsequently into planetary magnetospheres. During its lifetime in the Galaxy, CR pass through the small grammage of the interstellar matter where they produce secondary antiprotons. In contrast to this, antiprotons generated by the same CR in magnetosphere are locally produced at a path length of several tens g/cm2 of matter in the ambient planetary upper atmosphere. Due to the latter process, the resulting magnetically confined fluxes significantly exceed the fluxes of the galactic antiprotons in the Earth’s vicinity by up to two orders of magnitude at some energies.The radiation belt antiparticles can possibly be extracted with an electromagnetic-based “scoop” device. The antiparticles could be concentrated by and then stored within the superimposed magnetic field structure of such a device. In future developments, it is anticipated that the energy of the captured antiparticles (both rest energy and kinetic energy) can be adapted for use as a fuel for propelling spacecraft to high velocities for remote solar system missions. 相似文献
Frequency fluctuations of the Galileo S-band radio signal were recorded nearly continuously during the spacecraft’s solar conjunction from December 1996 to February 1997. A strong propagating disturbance, most probably associated with a coronal mass ejection (CME), was detected on 7 February when the radio ray path proximate point was on the west solar limb at about 54 solar radii from the Sun. The CME passage through the line of sight is characterized by a significant increase in the fluctuation intensity of the recorded frequency and by an increase in the plasma speed from about 234 km s−1 up to about 755 km s−1. These velocity estimates are obtained from a correlation analysis of frequency fluctuations recorded simultaneously at two widely-separated ground stations. The density turbulence power spectrum is found to steepen behind the CME front. The Galileo radio-sounding data are compared with SOHO/LASCO observations of the CME in the corona and with WIND spacecraft data near the Earth’s orbit. 相似文献
It is well known that temperature- and watervapour-profiles, ozone concentration, other atmospheric constituents and the surface-radiation of the Earth can be determined by remote sensing in the IR radiation range with the aid of a satellite.
The narrow-band radiation measurements for remote sensing of the atmosphere and the Earth-surface can be realized either by various radiometers working in selected frequency channels or, continuously in a given frequency range, by spectrometers with fixed spectral resolution.
Fourier-spectrometers (FS) have been used in Earth-orbit only four times up to now: Nimbus 3, Nimbus 4, Meteor 25 and Meteor 28.
The most important technical parameters, the working regime and some aspects of date processing of the FSs working aboard of Meteor 25 and Meteor 28 are given. For the determination of calibrated absolute spectra a method is used that is based on the experience of the first experiment and on the long time stability of the spectrometers. The results obtained in laboratory calibration tests and in the orbit are described. 相似文献
The environment and radar operation simulator (EROS) is a hardware system whose function is to produce realistic synthetic radar backscatter, incorporating both target and clutter. The simulator is electrically connected to a subject radar and responds in real time to the radar's antenna scan angle by producing the correct composite video signal. 相似文献