全文获取类型
收费全文 | 3325篇 |
免费 | 10篇 |
国内免费 | 4篇 |
专业分类
航空 | 1311篇 |
航天技术 | 1042篇 |
综合类 | 19篇 |
航天 | 967篇 |
出版年
2022年 | 15篇 |
2021年 | 37篇 |
2019年 | 16篇 |
2018年 | 183篇 |
2017年 | 134篇 |
2016年 | 116篇 |
2015年 | 44篇 |
2014年 | 111篇 |
2013年 | 137篇 |
2012年 | 118篇 |
2011年 | 167篇 |
2010年 | 131篇 |
2009年 | 193篇 |
2008年 | 192篇 |
2007年 | 126篇 |
2006年 | 74篇 |
2005年 | 102篇 |
2004年 | 96篇 |
2003年 | 106篇 |
2002年 | 83篇 |
2001年 | 117篇 |
2000年 | 36篇 |
1999年 | 53篇 |
1998年 | 61篇 |
1997年 | 42篇 |
1996年 | 43篇 |
1995年 | 80篇 |
1994年 | 61篇 |
1993年 | 37篇 |
1992年 | 47篇 |
1991年 | 10篇 |
1990年 | 19篇 |
1989年 | 41篇 |
1988年 | 11篇 |
1987年 | 17篇 |
1986年 | 16篇 |
1985年 | 70篇 |
1984年 | 56篇 |
1983年 | 48篇 |
1982年 | 42篇 |
1981年 | 82篇 |
1980年 | 25篇 |
1979年 | 16篇 |
1978年 | 14篇 |
1977年 | 17篇 |
1976年 | 13篇 |
1975年 | 13篇 |
1974年 | 11篇 |
1972年 | 13篇 |
1971年 | 11篇 |
排序方式: 共有3339条查询结果,搜索用时 0 毫秒
991.
P.S. Dobreva M.D. Kartalev D. Koitchev V.I. Keremidarska M. Kaschiev 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,41(8):1279-1285
This article presents some preliminary features of a new self consistent model of the system magnetosheath–magnetosphere, recently developed in the Institute of Mechanics, Sofia, Bulgaria. The flow in the magnetosheath is governed by 3D ideal gas-dynamic equations. The positions and the shapes of the bow shock and the magnetopause are calculated iteratively as a part of the solution. These surfaces are essentially three-dimensional (generally non-axially-symmetric). The self-consistency between the regions is ensured via the boundary conditions. The magnetopause cusp indentations are formed, influencing essentially the magnetosheath flow. Prediction of the position and the shape of the bow shock for different values of the sonic Mach number are derived. Distribution of some flow parameters in the magnetosheath is presented. 3D numerical finite element model, calculating the field due to the magnetopause currents for an arbitrary magnetopause geometry, is used in the magnetosphere. The fields due to the current systems inside the magnetosphere(cross-tail current, ring current, and Birkeland current) are taken from the Tsyganenko empirical model. The magnetopause surface is calculated from the requirement the outside gas-dynamic pressure to be balanced by the magnetic pressure inside. The magnetosphere model can be viewed as an improved version of the empirical model but with more realistic magnetopause form and shielding field. Not a final but a beta version is used in this approach. The final model version as well the model details will be presented elsewhere. 相似文献
992.
W. I. Axford J. F. McKenzie G. V. Sukhorukova M. Banaszkiewicz A. Czechowski R. Ratkiewicz 《Space Science Reviews》1999,87(1-2):25-41
We outline a theory for the origin and acceleration of the fast solar wind as a consequence of network microflares releasing a spectrum of high frequency Alfvén waves which heat (by cyclotron absorption) the corona close to the Sun. The significant features of our model of the fast wind are that the acceleration is rapid with the sonic point at around two solar radii, the proton temperatures are high (~ 5 million degrees) and the minor ions are correspondingly hotter, roughly in proportion to their mass. Moreover we argue that since the energy flux needed to power the quiet corona in closed field regions is about the same as that needed to drive the fast solar wind, and also because at deeper levels (< 2 × 105 K) there is no great difference in the properties of supergranules and network in closed and open field regions, the heating process (i.e., dissipation of high frequency waves) must be the same in both cases. This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
993.
Nonparametric Radar Extraction Using a Generalized Sign Test 总被引:3,自引:0,他引:3
A nonparametric procedure used in a constant false alarm rate (CFAR) radar extractor for detecting targets in a background of noise with unknown statistical properties is described. The detector is based on a generalization of the well-known two-sample sign test and thus requires a set of reference noise observations in addition to the set of observations being tested for signal presence. The detection performance against Gaussian noise is determined for a finite number of observations and asymptotically, for both nonfluctuating and pulse-to-pulse Rayleigh fluctuating target statistics. It is noted that the performance loss, as compared to the optimum parametric detector, depends critically on the number of reference noise observations available when the number of hits per target is not large. In the same case a much larger loss is also found for a pulse-to-pulse fluctuating target even though the asymptotic loss is the same as for a nonfluctuating target. A comparison is finally made with a detector based on the Mann-Whitney test, which usually is considered to be one of the better nonparametric procedures for the two-sample case. 相似文献
994.
J. Semkova R. Koleva St. Maltchev N. Bankov V. Benghin I. Chernykh V. Shurshakov V. Petrov S. Drobyshev I. Nikolaev 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2012
The Liulin-5 experiment is a part of the international project MATROSHKA-R on the Russian segment of the ISS, which uses a tissue-equivalent spherical phantom equipped with a set of radiation detectors. The objective of the MATROSHKA-R project is to provide depth dose distribution of the radiation field inside the sphere in order to get more information on the distribution of dose in a human body. Liulin-5 is a charged particle telescope using three silicon detectors. It measures time resolved energy deposition spectra, linear energy transfer (LET) spectra, particle flux, and absorbed doses of electrons, protons and heavy ions, simultaneously at three depths along the radius of the phantom. Measurements during the minimum of the solar activity in cycle 23 show that the average absorbed daily doses at 40 mm depth in the phantom are between 180 μGy/day and 220 μGy/day. The absorbed doses at 165 mm depth in the phantom decrease by a factor of 1.6–1.8 compared to the doses at 40 mm depth due to the self-shielding of the phantom from trapped protons. The average dose equivalent at 40 mm depth is 590 ± 32 μSV/day and the galactic cosmic rays (GCR) contribute at least 70% of the total dose equivalent at that depth. Shown is that due to the South Atlantic Anomaly (SAA) trapped protons asymmetry and the direction of Liulin-5 lowest shielding zone the dose rates on ascending and descending nodes in SAA are different. The data obtained are compared to data from other radiation detectors on ISS. 相似文献
995.
B.T. Kress J.V. Rodriguez J.E. Mazur M. Engel 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
Solar energetic particle (SEP) cutoffs at geosynchronous orbit are sensitive to moderate geomagnetic activity and undergo daily variations due to the day–night asymmetry of the magnetosphere. At geosynchronous orbit, cutoff rigidity also has a large directional dependence, with the highest cutoff rigidity corresponding to ions arriving from magnetic east and lowest cutoff rigidity corresponding to ions incident from the west. Consequently, during geomagnetically quiet periods, the SEP flux observed by an eastward facing particle detector is significantly lower than observed by a westward facing particle detector. During geomagnetically disturbed periods the cutoff is suppressed allowing SEPs access well inside of geosynchronous, so that the east–west SEP flux ratio approaches unity. Variations in the east–west SEP flux ratio observed by GOES Energetic Particle Sensors (EPS) have recently been reported by Rodriguez et al. (2010). In NOAA’s operational processing of EPS count rates into differential fluxes, the differential flux is treated as isotropic and flat over the energy width of the channel. To compare modeled SEP flux with GOES EPS observations, the anisotropy of the flux over the EPS energy range and field of view must be taken into account. A technique for making direct comparisons between GOES EPS observations and SEP flux modeled using numerically computed geomagnetic cutoffs is presented. Initial results from a comparison between modeled and observed flux during the 6–11 December 2006 SEP event are also presented. The modeled cutoffs reproduce the observed flux variations well but are in general too high. 相似文献
996.
R.M. Gunasingha A.R. Fazely J.H. Adams Jr. H.S. Ahn G.L. Bashindzhagyan K.E. Batkov J. Chang M. Christl O. Ganel T.G. Guzik J. Isbert K.C. Kim E.N. Kouznetsov M.I. Panasyuk A.D. Panov W.K.H. Schmidt E.S. Seo N.V. Sokolskaya J.W. Watts J.P. Wefel J. Wu V.I. Zatsepin Z.W. Lin 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008
We have performed a detailed Monte-Carlo (MC) simulation for the Advanced Thin Ionization Calorimeter (ATIC) detector using the MC code FLUKA-2005 which is capable of simulating particles up to 10 PeV. The ATIC detector has completed two successful balloon flights from McMurdo, Antarctica lasting a total of more than 35 days. ATIC is designed as a multiple, long duration balloon flight, investigation of the cosmic ray spectra from below 50 GeV to near 100 TeV total energy; using a fully active Bismuth Germanate (BGO) calorimeter. It is equipped with a large mosaic of silicon detector pixels capable of charge identification, and, for particle tracking, three projective layers of x–y scintillator hodoscopes, located above, in the middle and below a 0.75 nuclear interaction length graphite target. Our simulations are part of an analysis package of both nuclear (A) and energy dependences for different nuclei interacting in the ATIC detector. The MC simulates the response of different components of the detector such as the Si-matrix, the scintillator hodoscopes and the BGO calorimeter to various nuclei. We present comparisons of the FLUKA-2005 MC calculations with GEANT calculations and with the ATIC CERN data. 相似文献
997.
S. Kodaira R.V. Tolochek I. Ambrozova H. Kawashima N. Yasuda M. Kurano H. Kitamura Y. Uchihori I. Kobayashi H. Hakamada A. Suzuki I.S. Kartsev E.N. Yarmanova I.V. Nikolaev V.A. Shurshakov 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
The dose reduction effects for space radiation by installation of water shielding material (“protective curtain”) of a stack board consisting of the hygienic wipes and towels have been experimentally evaluated in the International Space Station by using passive dosimeters. The averaged water thickness of the protective curtain was 6.3 g/cm2. The passive dosimeters consisted of a combination of thermoluminescent detectors (TLDs) and plastic nuclear track detectors (PNTDs). Totally 12 passive dosimeter packages were installed in the Russian Service Module during late 2010. Half of the packages were located at the protective curtain surface and the other half were at the crew cabin wall behind or aside the protective curtain. The mean absorbed dose and dose equivalent rates are measured to be 327 μGy/day and 821 μSv/day for the unprotected packages and 224 μGy/day and 575 μSv/day for the protected packages, respectively. The observed dose reduction rate with protective curtain was found to be 37 ± 7% in dose equivalent, which was consistent with the calculation in the spherical water phantom by PHITS. The contributions due to low and high LET particles were found to be comparable in observed dose reduction rate. The protective curtain would be effective shielding material for not only trapped particles (several 10 MeV) but also for low energy galactic cosmic rays (several 100 MeV/n). The properly utilized protective curtain will effectively reduce the radiation dose for crew living in space station and prolong long-term mission in the future. 相似文献
998.
Eduard V. Vashenyuk Yury V. Balabin Leonty I. Miroshnichenko 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,41(6):926-935
In this study we applied again to the outstanding solar particle event of 23 February 1956, the largest one in the entire history of observations of solar cosmic rays. Due to significant improvement of the analysis/modeling techniques and new understanding of physical processes in the solar atmosphere and interplanetary space, a possibility arises to interpret the old data in the light of modern concept of multiple particle acceleration at/near the Sun. In our new analysis the data of available then neutron monitors and muon telescopes are used. The technique of the analysis includes: (a) calculation of asymptotic cones of ground-based detectors; (b) modeling of cosmic ray detector responses at variable parameters of the flux of solar relativistic protons; (c) determination of primary solar proton parameters outside magnetosphere by comparison of computed responses with observations. Certain evidence was obtained that the flux of relativistic solar protons consisted of two distinct components: prompt and delayed ones. The prompt component with exponential energy spectrum caused a giant impulse-like increase at a number of European cosmic ray stations. The delayed component had a power-law spectrum and was a cause of gradual increase at cosmic ray stations in the North American region. A numerical simulation of the proton acceleration in the vicinity of the magnetic reconnection region brings to the proton spectrum with exponential dependence on energy. This agrees with observational data for the prompt component. It is also shown that the huge increase in ∼5000% on neutron monitors was due to the prompt component only with the exponential proton spectrum. The power-law spectrum of comparable intensity gave considerably smaller effect. 相似文献
999.
1000.
I.V. Zimovets M. Gros A.B. Struminsky 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2009
We report multi-wavelength investigation of the pre-impulsive phase of the 13 December 2006 X-class solar flare. We use hard X-ray data from the anticoincidence system of spectrometer onboard INTEGRAL (ACS) jointly with soft X-ray data from the GOES-12 and Hinode satellites. Radio data are from Nobeyama and Learmonth solar observatories and from the Culgoora Solar Radio Spectrograph. The main finding of our analysis is a spiky increase of the ACS count rate accompanied by surprisingly gradual and weak growth of microwave emission and without detectable radio emission at meter and decimeter wavelengths about 10 min prior to the impulsive phase of the solar flare. At the time of this pre-flare hard X-ray burst the onset of the GOES soft X-ray event has been reported, positive derivative of the GOES soft X-ray flux started to rise and a bright spot has appeared in the images of the Hinode X-ray telescope (XRT) between the flare ribbons near the magnetic inversion line close to the sources of thermal and non-thermal hard X-ray emission observed by Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI) during the flare. These facts we consider as evidences of solar origin of the increased pre-flare ACS count rate. We briefly discuss a possible cause of the pre-flare emission peculiarities. 相似文献