全文获取类型
收费全文 | 7850篇 |
免费 | 18篇 |
国内免费 | 33篇 |
专业分类
航空 | 3488篇 |
航天技术 | 2784篇 |
综合类 | 32篇 |
航天 | 1597篇 |
出版年
2021年 | 77篇 |
2019年 | 47篇 |
2018年 | 249篇 |
2017年 | 167篇 |
2016年 | 144篇 |
2015年 | 58篇 |
2014年 | 200篇 |
2013年 | 249篇 |
2012年 | 228篇 |
2011年 | 333篇 |
2010年 | 239篇 |
2009年 | 396篇 |
2008年 | 430篇 |
2007年 | 250篇 |
2006年 | 183篇 |
2005年 | 233篇 |
2004年 | 228篇 |
2003年 | 262篇 |
2002年 | 176篇 |
2001年 | 264篇 |
2000年 | 149篇 |
1999年 | 176篇 |
1998年 | 195篇 |
1997年 | 156篇 |
1996年 | 181篇 |
1995年 | 242篇 |
1994年 | 216篇 |
1993年 | 110篇 |
1992年 | 171篇 |
1991年 | 58篇 |
1990年 | 65篇 |
1989年 | 154篇 |
1988年 | 50篇 |
1987年 | 52篇 |
1986年 | 68篇 |
1985年 | 216篇 |
1984年 | 172篇 |
1983年 | 135篇 |
1982年 | 157篇 |
1981年 | 214篇 |
1980年 | 62篇 |
1979年 | 44篇 |
1978年 | 47篇 |
1977年 | 45篇 |
1976年 | 39篇 |
1975年 | 37篇 |
1974年 | 42篇 |
1972年 | 33篇 |
1971年 | 30篇 |
1970年 | 32篇 |
排序方式: 共有7901条查询结果,搜索用时 15 毫秒
161.
M Nelson L Leigh A Alling T MacCallum J Allen N Alvarez-Romo 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1992,12(5):151-156
Constructed in 1986, the Biosphere 2 Test Module has been used since the end of that year for closed ecological systems experiments. It is the largest closed ecological facility ever built, with a sealed variable volume of some 480 cubic meters. It is built with a skin of steel spaceframes with double-laminated glass panels admitting about 65 percent Photosynthetically Active Radiation (PAR). The floor is of welded steel and there is an underground atmospheric connection via an air duct to a variable volume chamber ("lung") permitting expansion and contraction of the Test Module's air volume caused by changes in temperature and barometric pressure, which causes a slight positive pressure from inside the closed system to the outside thereby insuring that the very small leakage rate is outward. Several series of closed ecological system investigations have been carried out in this facility. One series of experiments investigated the dynamics of higher plants and associated soils with the atmosphere under varying light and temperature conditions. Another series of experiments included one human in the closed system for three, five and twenty-one days. During these experiments the Test Module had subsystems which completely recycled its water and atmosphere; all the human dietary needs were produced within the facility, and all wastes were recycled using a marsh plant/microbe system. Other experiments have examined the capability of individual component systems used, such as the soil bed reactors, to eliminate experimentally introduced trace gases. Analytic systems developed for these experiments include continuous monitors of eleven atmospheric gases in addition to the complete gas chromatography mass spectrometry (GCMS) examinations of potable, waste system and irrigation water quality. 相似文献
162.
K Dose A Bieger-Dose M Labusch M Gill 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》1992,12(4):221-229
A wide variety of organisms (the so-called "anhydrobiotes') is able to survive long periods of time in a state of utmost dehydration and can thus survive in extremely dry environments including artificially imposed or space vacuum. Known strategies of survival include the accumulation of certain polyols, especially disaccharides, which help prevent damage to membranes and proteins. Here we report that DNA in vacuum-dried spores is damaged to a very substantial degree by processes leading to DNA strand breaks. Most of these lesions are obviously repaired during germination, but extensive damage to DNA and enzymes after long exposure times (months to years) finally diminish the chances of survival. 相似文献
163.
H. Fuke Y. Tasaki K. Abe S. Haino Y. Makida S. Matsuda J.W. Mitchell A.A. Moiseev J. Nishimura M. Nozaki S. Orito J.F. Ormes M. Sasaki E.S. Seo Y. Shikaze R.E. Streitmatter J. Suzuki K. Tanaka T. Yamagami A. Yamamoto T. Yoshida K. Yoshimura 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,41(12):2050-2055
164.
V. Di Felice M. Casolino N. De Simone P. Picozza 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2008,41(12):2037-2042
PAMELA is a satellite-borne experiment that has been launched on June 15th, 2006. It is designed to make long duration measurements of cosmic radiation over an extended energy range. Specifically, PAMELA is able to measure the cosmic ray antiproton and positron spectra over the largest energy range ever achieved and will search for antinuclei with unprecedented sensitivity. Furthermore, it will measure the light nuclear component of cosmic rays and investigate phenomena connected with solar and earth physics. The apparatus consists of: a time of flight system, a magnetic spectrometer, an electromagnetic imaging calorimeter, a shower tail catcher scintillator, a neutron detector and an anticoincidence system. In this work a study of the PAMELA capabilities to detect electrons is presented. The Jovian magnetosphere is a powerful accelerator of electrons up to several tens of MeV as observed at first by Pioneer 10 spacecraft (1973). The propagation of Jovian electrons to Earth is affected by modulation due to Corotating Interaction Regions (CIR). Their flux at Earth is, moreover, modulated because every 13 months Earth and Jupiter are aligned along the average direction of the Parker spiral of the Interplanetary Magnetic Field.PAMELA will be able to measure the high energy tail of the Jovian electrons in the energy range from 50 up to 130 MeV. Moreover, it will be possible to extract the Jovian component reaccelerated at the solar wind termination shock (above 130 MeV up to 2 GeV) from the galactic flux. 相似文献
165.
F. Vigier A. Le Postollec G. Coussot D. Chaput H. Cottin T. Berger S. Incerti S. Triqueneaux M. Dobrijevic O. Vandenabeele-Trambouze 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2013
Biochips might be suited for planetary exploration. Indeed, they present great potential for the search for biomarkers – molecules that are the sign of past or present life in space – thanks to their size (miniaturized devices) and sensitivity. Their detection principle is based on the recognition of a target molecule by affinity receptors fixed on a solid surface. Consequently, one of the main concerns when developing such a system is the behavior of the biological receptors in a space environment. In this paper, we describe the preparation of an experiment planned to be part of the EXPOSE-R2 mission, which will be conducted on the EXPOSE-R facility, outside the International Space Station (ISS), in order to study the resistance of biochip models to space constraints (especially cosmic radiation and thermal cycling). This experiment overcomes the limits of ground tests which do not reproduce exactly the space parameters. Indeed, contrary to ground experiments where constraints are applied individually and in a limited time, the biochip models on the ISS will be exposed to cumulated constraints during several months. Finally, this ISS experiment is a necessary step towards planetary exploration as it will help assessing whether a biochip can be used for future exploration missions. 相似文献
166.
S. Narendranath P.S. Athiray P. Sreekumar V. Radhakrishna A. Tyagi B.J. Kellett the CLASS team 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
Surface chemistry of airless bodies in the solar system can be derived from remote X-ray spectral measurements from an orbiting spacecraft. X-rays from planetary surfaces are excited primarily by solar X-rays. Several experiments in the past have used this technique of X-ray fluorescence for deriving abundances of the major rock forming elements. The Chandrayaan-2 orbiter carries an X-ray fluorescence experiment named CLASS that is designed based on results from its predecessor C1XS flown on Chandrayaan-1. We discuss the new aspects of lunar science that can be potentially achieved with CLASS. 相似文献
167.
A.K. Sharma D.P. Nade S.S. Nikte P.T. Patil R.N. Ghodpage R.S. Vhatkar M.V. Rokade S. Gurubaran 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
This paper reports the nightglow observations of OI 630.0 nm emissions, made by using all sky imager operating at low latitude station Kolhapur (16.8°N, 74.2°E and dip lat. 10.6°N) during high sunspot number years of 24th solar cycle. The images are analyzed to study the nocturnal, seasonal and solar activity dependence occurrence of plasma bubbles. We observed EPBs in images regularly during a limited period 19:30 to 02:30 LT and reach maximum probability of occurrence at 22:30 LT. The observation pattern of EPBs shows nearly no occurrence during the month of May and it maximizes during the period October–April. The equinox and solstice seasonal variations in the occurrence of plasma bubbles show nearly equal and large differences, respectively, between years of 2010–11 and 2011–12. 相似文献
168.
169.
I.L. Babich V.F. BoretskijA.N. Veklich R.V. Semenyshyn 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
Optical emission and linear laser absorption spectroscopy techniques were used in investigation of plasma with copper and silver admixture. The method of selection of spectral lines and spectroscopic data with the aim of diagnostics of multicomponent air plasma with two metal vapors admixture was developed. Energy level populations behavior on the Boltzmann plot were used for Cu I and Ag I spectroscopic data selection. In this way the selection of spectroscopic data for some of Cu I and Ag I lines was realized. Stark broadening parameters of Cu I and Ag I were examined. Experimentally obtained temperature and electron density radial distributions were used in the calculation of plasma composition in the assumption of local thermodynamic equilibrium. Linear laser absorption spectroscopy was used to examine the state of plasma. 相似文献
170.
Q. Liu Z. Wu M. Zhu W.Q. Xu 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
The increase of balloon applications makes it necessary for a comprehensive understanding of the thermal and dynamic performance of scientific balloons. This paper proposed a novel numerical model to investigate the thermal and dynamic characteristics of scientific balloon in both ascending and floating conditions. The novel model consists of a dynamic model and thermal model, the dynamic model was solved numerically by a computer program developed with Matlab/Simulink to calculate the velocity and trajectory, the thermal model was solved by the Fluent program to find out the balloon film temperature distribution and inner Helium gas velocity and temperature field. These models were verified by comparing the numerical results with experimental data. Then the thermal and dynamic behavior of a scientific balloon in a real environment were simulated and discussed in details. 相似文献