首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   202篇
  免费   0篇
航空   168篇
航天技术   17篇
航天   17篇
  2018年   66篇
  2017年   37篇
  2016年   3篇
  2015年   6篇
  2013年   3篇
  2012年   1篇
  2011年   12篇
  2010年   7篇
  2009年   2篇
  2008年   9篇
  2007年   6篇
  2006年   3篇
  2005年   1篇
  2004年   4篇
  2002年   1篇
  2001年   6篇
  2000年   4篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   3篇
  1993年   4篇
  1992年   7篇
  1991年   1篇
  1989年   1篇
  1987年   1篇
  1986年   2篇
  1984年   1篇
  1982年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
排序方式: 共有202条查询结果,搜索用时 31 毫秒
51.
Transfers with a low thrust are considered under constraints imposed on the thrust vector direction. These constraints can be caused by peculiarities of the attitude control system and the mode of stabilization of a spacecraft, and, in the general case, they are functions of the time and state vector. The constraints specified by equalities and inequalities are investigated. It is shown that the optimal thrust is directed along the projection of the Lawden’s primer vector onto the restricting set.  相似文献   
52.
An organic haze layer in the upper atmosphere of Titan plays a crucial role in the atmospheric composition and climate of that moon. Such a haze layer may also have existed on the early Earth, providing an ultraviolet shield for greenhouse gases needed to warm the planet enough for life to arise and evolve. Despite the implications of such a haze layer, little is known about the organic material produced under early Earth conditions when both CO(2) and CH(4) may have been abundant in the atmosphere. For the first time, we experimentally demonstrate that organic haze can be generated in different CH(4)/CO(2) ratios. Here, we show that haze aerosols are able to form at CH(4) mixing ratios of 1,000 ppmv, a level likely to be present on early Earth. In addition, we find that organic hazes will form at C/O ratios as low as 0.6, which is lower than the predicted value of unity. We also show that as the C/O ratio decreases, the organic particles produced are more oxidized and contain biologically labile compounds. After life arose, the haze may thus have provided food for biota.  相似文献   
53.
THE CLUSTER ION SPECTROMETRY (CIS) EXPERIMENT   总被引:5,自引:0,他引:5  
The Cluster Ion Spectrometry (CIS) experiment is a comprehensive ionic plasma spectrometry package on-board the four Cluster spacecraft capable of obtaining full three-dimensional ion distributions with good time resolution (one spacecraft spin) with mass per charge composition determination. The requirements to cover the scientific objectives cannot be met with a single instrument. The CIS package therefore consists of two different instruments, a Hot Ion Analyser (HIA) and a time-of-flight ion COmposition and DIstribution Function analyser (CODIF), plus a sophisticated dual-processor-based instrument-control and Data-Processing System (DPS), which permits extensive on-board data-processing. Both analysers use symmetric optics resulting in continuous, uniform, and well-characterised phase space coverage. CODIF measures the distributions of the major ions (H+, He+, He++, and O+) with energies from ~0 to 40 keV/e with medium (22.5°) angular resolution and two different sensitivities. HIA does not offer mass resolution but, also having two different sensitivities, increases the dynamic range, and has an angular resolution capability (5.6° × 5.6°) adequate for ion-beam and solar-wind measurements.  相似文献   
54.
Carlson  C.W.  McFadden  J.P.  Turin  P.  Curtis  D.W.  Magoncelli  A. 《Space Science Reviews》2001,98(1-2):33-66
The ion and electron plasma experiment on the Fast Auroral Snapshot satellite (FAST) is designed to measure pitch-angle distributions of suprathermal auroral electrons and ions with high sensitivity, wide dynamic range, good energy and angular resolution, and exceptional time resolution. These measurements support the primary scientific goal of the FAST mission to understand the physical processes responsible for auroral particle acceleration and heating, and associated wave-particle interactions. The instrument includes a complement of 8 pairs of `Top Hat' electrostatic analyzer heads with microchannel plate (MCP) electron multipliers and discrete anodes to provide angle resolved measurements. The analyzers are packaged in four instrument stacks, each containing four analyzers. These four stacks are equally spaced around the spacecraft spin plane. Analyzers mounted on opposite sides of the spacecraft operate in pairs such that their individual 180° fields of view combine to give an unobstructed 360° field of view in the spin plane. The earth's magnetic field is within a few degrees of the spin plane during most auroral crossings, so the time resolution for pitch-angle distribution measurements is independent of the spacecraft spin period. Two analyzer pairs serve as electron and ion spectrometers that obtain distributions of 48 energies at 32 angles every 78 ms. Their standard energy ranges are 4 eV to 32 keV for electrons and 3 eV to 24 keV for ions. These sensors also have deflection plates that can track the magnetic field direction within 10° of the spin plane to resolve narrow, magnetic field-aligned beams of electrons and ions. The remaining six analyzer pairs collectively function as an electron spectrograph, resolving distributions with 16 contiguous pitch-angle bins and a selectable trade-off of energy and time resolution. Two examples of possible operating modes are a maximum time resolution mode with 16 angles and 6 energies every 1.63 ms, or a maximum energy resolution mode with 16 angles and 48 energies every 13 ms. The instrument electronics include mcp pulse amplifiers and counters, high voltage supplies, command/data interface circuits, and diagnostic test circuits. All data formatting, commanding, timing and operational control of the plasma analyzer instrument are managed by a central instrument data processing unit (IDPU), which controls all of the FAST science instruments. The IDPU creates slower data modes by averaging the high rate measurements collected on the spacecraft. A flexible combination of burst mode data and slower `survey' data are defined by IDPU software tables that can be revised by command uploads. Initial flight results demonstrate successful achievement of all measurement objectives.  相似文献   
55.
At the ionospheric level, the substorm onset (expansion phase) is marked by the initial brightening and subsequent breakup of a pre-existing auroral arc. According to the field line resonance (FLR) wave model, the substorm-related auroral arc is caused by the field-aligned current carried by FLRs. The FLRs are standing shear Alfvén wave structures that are excited along the dipole/quasi-dipole lines of the geomagnetic field. The FLRs (that can cause auroral arc) thread from the Earthward edge of the plasma sheet and link the auroral arc to the plasma sheet region of 6–15 R E. The region is associated with magnetic fluctuations that result from the nonlinear wave-wave interactions of the cross-field current-instability. The instability (excited at the substorm onset) disrupts the cross-tail current which is built up during the growth phase of the substorms and results in magnetic fluctuations. The diversion of the current to polar regions can lead to auroral arc intensification. The current FLR model is based on the amplitude equations that describe the nonlinear space-time evolution of FLRs in the presence of ponderomotive forces exerted by large amplitude FLRs (excited during substorms). The present work will modify the FLR wave model to include the effects arising from magnetic fluctuations that result from current disruption near the plasma sheet (6–15 R E). The nonlinear evolution of FLRs is coupled with the dynamics of plasma sheet through a momentum exchange term (resulting from magnetic fluctuations due to current disruption) in the generalized Ohm's law. The resulting amplitude equations including the effects arising from magnetic fluctuations can be used to study the structure of the auroral arcs formed during substorms. We have also studied the role of feedback mechanism (in a dipole geometry of the geomagnetic field) in the formation of the discrete auroral arc observed on the nightside magnetosphere. The present nonlinear dispersive model (NDM) is extended to include effects arising from the low energy electrons originating from the plasma sheet boundary layer. These electrons increase the ionospheric conductivity in a localized patch and enhance the field-aligned current through a feedback mechanism. The feedback effects were studied numerically in a dipole geometry using the the NDM. The numerical studies yield the magnitude of the field-aligned current that is large enough to form a discrete auroral arc. Our studies provide theoretical support to the observational work of Newell et al. that the feedback instability plays a major role in the formation of the discrete auroral arcs observed on the nightside magnetosphere.  相似文献   
56.
The 2018 InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) Mission has the mission goal of providing insitu data for the first measurement of the geothermal heat flow of Mars. The Heat Flow and Physical Properties Package (HP3) will take thermal conductivity and thermal gradient measurements to approximately 5 m depth. By necessity, this measurement will be made within a few meters of the lander. This means that thermal perturbations from the lander will modify local surface and subsurface temperature measurements. For HP3’s sensitive thermal gradient measurements, this spacecraft influence will be important to model and parameterize. Here we present a basic 3D model of thermal effects of the lander on its surroundings. Though lander perturbations significantly alter subsurface temperatures, a successful thermal gradient measurement will be possible in all thermal conditions by proper (\(>3~\mbox{m}\) depth) placement of the heat flow probe.  相似文献   
57.
The Juno Radiation Monitoring (RM) Investigation   总被引:1,自引:0,他引:1  
The Radiation Monitoring Investigation of the Juno Mission will actively retrieve and analyze the noise signatures from penetrating radiation in the images of Juno’s star cameras and science instruments at Jupiter. The investigation’s objective is to profile Jupiter’s \(>10\mbox{-MeV}\) electron environment in regions of the Jovian magnetosphere which today are still largely unexplored. This paper discusses the primary instruments on Juno which contribute to the investigation’s data suite, the measurements of camera noise from penetrating particles, spectral sensitivities and measurement ranges of the instruments, calibrations performed prior to Juno’s first science orbit, and how the measurements may be used to infer the external relativistic electron environment.  相似文献   
58.
59.
The ultraviolet spectrograph instrument on the Juno mission (Juno-UVS) is a long-slit imaging spectrograph designed to observe and characterize Jupiter’s far-ultraviolet (FUV) auroral emissions. These observations will be coordinated and correlated with those from Juno’s other remote sensing instruments and used to place in situ measurements made by Juno’s particles and fields instruments into a global context, relating the local data with events occurring in more distant regions of Jupiter’s magnetosphere. Juno-UVS is based on a series of imaging FUV spectrographs currently in flight—the two Alice instruments on the Rosetta and New Horizons missions, and the Lyman Alpha Mapping Project on the Lunar Reconnaissance Orbiter mission. However, Juno-UVS has several important modifications, including (1) a scan mirror (for targeting specific auroral features), (2) extensive shielding (for mitigation of electronics and data quality degradation by energetic particles), and (3) a cross delay line microchannel plate detector (for both faster photon counting and improved spatial resolution). This paper describes the science objectives, design, and initial performance of the Juno-UVS.  相似文献   
60.
The Search Coil Magnetometer for THEMIS   总被引:2,自引:0,他引:2  
THEMIS instruments incorporate a tri-axial Search Coil Magnetometer (SCM) designed to measure the magnetic components of waves associated with substorm breakup and expansion. The three search coil antennas cover the same frequency bandwidth, from 0.1 Hz to 4 kHz, in the ULF/ELF frequency range. They extend, with appropriate Noise Equivalent Magnetic Induction (NEMI) and sufficient overlap, the measurements of the fluxgate magnetometers. The NEMI of the searchcoil antennas and associated pre-amplifiers is smaller than 0.76 pT $/\sqrt{\mathrm{Hz}}$ at 10 Hz. The analog signals produced by the searchcoils and associated preamplifiers are digitized and processed inside the Digital Field Box (DFB) and the Instrument Data Processing Unit (IDPU), together with data from the Electric Field Instrument (EFI). Searchcoil telemetry includes waveform transmission, FFT processed data, and data from a filter bank. The frequency range covered depends on the available telemetry. The searchcoils and their three axis structures have been precisely calibrated in a calibration facility, and the calibration of the transfer function is checked on board, usually once per orbit. The tri-axial searchcoils implemented on the five THEMIS spacecraft are working nominally.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号