首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   0篇
航空   13篇
航天技术   14篇
航天   5篇
  2021年   2篇
  2018年   3篇
  2015年   1篇
  2013年   1篇
  2010年   3篇
  2009年   1篇
  2008年   1篇
  2007年   2篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1996年   1篇
  1989年   3篇
  1986年   1篇
  1984年   4篇
  1983年   1篇
  1974年   1篇
排序方式: 共有32条查询结果,搜索用时 31 毫秒
21.
The long-term effects of irradiation by accelerated heavy ions on the structure and function of the nervous system have not been studied extensively. Although the adult brain is relatively resistant to low LET radiation, cellular studies indicate that individual heavy ions can produce serious membrane lesions and multiple chromatin breaks. Capillary hemorrhages may follow high LET particle irradiation of the developing brain as high RBE effects. Evidence has been accumulating that the glial system and blood-brain barrier (BBB) are relatively sensitive to injury by ionizing radiation. While DNA repair is active in neural systems, it may be assumed that a significant portion of this molecular process is misrepair. Since the expression of cell lethality usually requires cell division, and nerve cells have an extremely low rate of division, it is possible that some of the characteristic changes of premature aging may represent a delayed effect of chromatin misrepair in brain. Altered microcirculation, decreased local metabolism, entanglement and reduction in synaptic density, premature loss of neurons, myelin degeneration, and glial proliferation are late signs of such injuries. HZE particles are very efficient in producing carcinogenic cell transformation, reaching a peak for iron particles. The promotion of viral transformation is also efficient up to an energy transfer of approximately 300 keV/micron. The RBE for carcinogenesis in nerve tissues remains unknown. On the basis of available information concerning HZE particle flux in interplanetary space, only general estimates of the magnitude of the effects of long-term spaceflight on some nervous system parameters may be constructed.  相似文献   
22.
In October of 2005, the European Space Agency (ESA) and Alcatel Alenia Spazio released a "call to academia for innovative concepts and technologies for lunar exploration." In recent years, interest in lunar exploration has increased in numerous space programs around the globe, and the purpose of our study, in response to the ESA call, was to draw on the expertise of researchers and university students to examine science questions and technologies that could support human astrobiology activity on the Moon. In this mini review, we discuss astrobiology science questions of importance for a human presence on the surface of the Moon and we provide a summary of key instrumentation requirements to support a lunar astrobiology laboratory.  相似文献   
23.
Weiss  N.O.  Tobias  S.M. 《Space Science Reviews》2000,94(1-2):99-112
The magnetic fields that dominate the structure of the Sun's atmosphere are controlled by processes in the solar interior, which cannot be directly observed. Magnetic activity is found in all stars with deep convective envelopes: young and rapidly rotating stars are very active but cyclic activity only appears in slow rotators. The Sun's 11-year activity cycle corresponds to a 22-year magnetic cycle, since the sunspot fields (which are antisymmetric about the equator) reverse at each minimum. The record of magnetic activity is aperiodic and is interrupted by episodes of reduced activity, such as the Maunder Minimum in the seventeenth century, when sunspots almost completely disappeared. The proxy record from cosmogenic isotopes shows that similar grand minima recur at intervals of around 200 yr. The Sun's large-scale field is generated by dynamo action rather than by an oscillator. Systematic magnetic cycles are apparently produced by a dynamo located in a region of weak convective overshoot at the base of the convection zone, where there are strong radial gradients in the angular velocity . The crucial parameter (the dynamo number) increases with increasing and kinematic (linear) theory shows that dynamo action can set in at an oscillatory (Hopf) bifurcation that is probably subcritical. Although it has been demonstrated that the whole process works in a self-consistent model, most calculations have relied on mean-field dynamo theory. This approach is physically plausible but can only be justified under conditions that do not apply in the Sun. Still, mean-field dynamos do reproduce the butterfly diagram and other key features of the solar cycle. An alternative approach is to study generic behaviour in low-order models, which exhibit two forms of modulation, associated with symmetry-breaking and with reduced activity. Comparison with observed behaviour suggests that modulation of the solar cycle is indeed chaotic, i.e. deterministically rather than stochastically driven.  相似文献   
24.
A total solar eclipse occurred on 21 August 2017, with the path of totality starting over the North Pacific Ocean, crossing North-America and ending over the Mid-Atlantic Ocean slightly North of the equator. As a result, a partial solar eclipse was observed as far away as the Western Europe. The ionospheric observatory in Dourbes, Belgium, was right on the edge of the partial eclipse and was exposed for a very short period of only few minutes just before the local sunset. High-resolution ionospheric measurements were carried out at the observatory with collocated digital ionosonde and GNSS receivers. The data analysis revealed a clear wave-like pattern in the ionosphere that can be seen arriving before the local onset of the eclipse. The paper details the analysis and provides a possible explanation of the observed phenomenon.  相似文献   
25.
26.
The predominance of nitrogen in highly volatile forms and of carbon in solids set the abundance ratios of these elements in the inner planets, meteorites and comets. The absence of carbon compounds in an atmosphere then signals large deposits of carbon-bearing compounds in surface and/or subsurface deposits. In contrast, the icy planetesimals that contributed heavy elements to Jupiter must have had identical enrichments (relative to hydrogen) of both C and N, as well as other heavy elements that have been measured, compared to solar values. Capture of N and Ar suggests that the icy planetesimals that carried these elements must have formed at low temperatures, <40 K. New measurements of isotopes of nitrogen support this picture, but we must have more measurements in more atmospheres to be certain of this scenario.  相似文献   
27.
In this paper I discuss the importance of turbulence, rotation, penetration and shear for solar dynamos (both local and global). An understanding of these processes is vital for progress towards a self-consistent theory for the generation of solar magnetic activity. I discuss the difficulties for large-scale field generation and suggest that large-scale solar magnetic activity may be driven by dynamos that arise owing to instabilities, with these dynamos modified by the presence of turbulence.  相似文献   
28.
The premature chromosome condensation (PCC) technique was used to investigate chromosomal damage, repair, and misrepair in the G phase of a human/hamster hybrid cell line that contains a single human chromosome. Plateau-phase cell cultures were exposed to either x-rays or a 425 MeV/u beam of neon ions near the Bragg peak where the LET is 183 kev/micrometers. An in situ hybridization technique coupled to fluorescent staining of PCC spreads confirmed the linearity of the dose response for initial chromatin breakage in the human chromosome to high doses (1600 cGy x-ray or 1062 cGy Ne). On Giemsa-stained slides, initial chromatin breakage in the total genome and the rejoining kinetics of these breaks were determined. As a measure of chromosomal misrepair, ring PCC aberrations were also scored. Ne ions were about 1.5 x more effective per unit dose compared to x-rays at producing the initially measured chromatin breakage. 90% of the x-ray-induced breaks rejoined in cells incubated at 37 degrees C after exposure. In contrast, only 50% of Ne-ion-induced breaks rejoined. In the irradiated G1 cells, ring PCC aberrations increased with time apparently by first order kinetics after either x-ray or Ne exposures. However, far fewer rings formed in Ne-irradiated cells after a dose giving a comparable initial number of chromatin breaks. Following x-ray exposures, the yield of rings formed after long repair times (6 to 9 hrs) fit a quadratic dose-response curve. These results indicate quantitative and qualitative differences in the chromosomal lesions induced by low- and high-LET radiations.  相似文献   
29.
For many years we have been interested in understanding the potential carcinogenic effects of cosmic rays. We have studied the oncogenic effects of cosmic rays with accelerator-produced heavy particle radiation and with a cultured mammalian cell system--C3H10T1/2 cells. Our quantitative data obtained with carbon, neon, silicon, and iron particles showed that RBE is both dose and LET dependent for neoplastic cell transformation. RBE is higher at lower dose, and RBE increases with LET up to about 200 keV/micrometer. In nonproliferation confluent cells, heavy-ion induced transformation damage may not be repairable, although a dose modifying factor of about 1.7 was observed for X-ray radiation. Our recent studies with super-heavy high-energy particles, e.g., 960 MeV/U U235 ions (LET = 1900 keV/micrometer), indicate that these ions with a high inactivation cross-section can cause neoplastic cell transformation. The induction of cell transformation by radiation can be modified with various chemicals. We have found that the presence of DMSO (either during or many days after irradiation) decreased the transformation frequency significantly. It is, therefore, potentially possible to reduce the oncogenic effect of cosmic rays in space through some chemical protection.  相似文献   
30.
We summarize the current status of atmospheric chemistry in the atmospheres of the outer solar system with special emphasis on the question of HCN formation on Jupiter, differences between polar and equatorial compositions on Jupiter, the coloration of the Great Red Spot, and the unique environment of Titan.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号