首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   259篇
  免费   1篇
  国内免费   1篇
航空   208篇
航天技术   32篇
航天   21篇
  2021年   4篇
  2019年   2篇
  2018年   66篇
  2017年   38篇
  2016年   3篇
  2015年   3篇
  2013年   4篇
  2012年   1篇
  2011年   17篇
  2010年   10篇
  2009年   8篇
  2008年   7篇
  2007年   7篇
  2006年   3篇
  2005年   5篇
  2004年   5篇
  2003年   4篇
  2002年   1篇
  2001年   4篇
  2000年   3篇
  1999年   3篇
  1998年   2篇
  1997年   6篇
  1995年   1篇
  1994年   5篇
  1993年   10篇
  1992年   3篇
  1990年   2篇
  1989年   4篇
  1988年   4篇
  1985年   4篇
  1984年   5篇
  1982年   1篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1975年   2篇
  1974年   1篇
  1972年   1篇
  1971年   1篇
  1969年   2篇
  1967年   1篇
  1966年   1篇
排序方式: 共有261条查询结果,搜索用时 15 毫秒
81.
Yohkoh has observed many long duration events permitting a statistical study of the properties of these interesting events. We have selected ten flares for analysis which have durations between 5 and 20 hours, and size ranging from C to X GOES class. Employing the Soft X-ray Telescope, the Bragg Crystal Spectrometer, GOES spacecraft, and ground-based H data, we examine the morphology, temperature, emission measure, location of the hard X-ray source, non-thermal velocities and upflows of the plasma at different stages in the flare development. Our results are used to address the question of the energy source that maintains the hot plasma at temperatures of several million degrees for many hours.  相似文献   
82.
Precise Orbit Determination (POD) for the Gravity field and steady-state Ocean Circulation Explorer (GOCE), the first core explorer mission by the European Space Agency (ESA), forms an integrated part of the so-called High-Level Processing Facility (HPF). Two POD chains have been set up referred to as quick-look Rapid and Precise Science Orbit determination or RSO and PSO, respectively. These chains make use of different software systems and have latencies of 1 day and 2 weeks, respectively, after tracking data availability. The RSO and PSO solutions have to meet a 3-dimensional (3D) position precision requirement of 50 cm and a few cm, respectively. The tracking data will be collected by the new Lagrange GPS receiver and the predicted characteristics of this receiver have been taken into account during the implementation phase of the two chains.  相似文献   
83.
The Rotation and Interior Structure Experiment (RISE) on-board the InSight mission will use the lander’s X-band (8 GHz) radio system in combination with tracking stations of the NASA Deep Space Network (DSN) to determine the rotation of Mars. RISE will measure the nutation of the Martian spin axis, detecting for the first time the effect of the liquid core of Mars and providing in turn new constraints on the core radius and density. RISE will also measure changes in the rotation rate of Mars on seasonal time-scales thereby constraining the atmospheric angular momentum budget. Finally, RISE will provide a superb tie between the cartographic and inertial reference frames. This paper describes the RISE scientific objectives and measurements, and provides the expected results of the experiment.  相似文献   
84.
Comets are considered the most primitive planetary bodies in our Solar System, i.e., they should have best preserved the solid components of the matter from which our Solar System formed. ESA’s recent Rosetta mission to Jupiter family comet 67P/Churyumov–Gerasimenko (67P/CG) has provided a wealth of isotope data which expanded the existing data sets on isotopic compositions of comets considerably. In this paper we review our current knowledge on the isotopic compositions of H, C, N, O, Si, S, Ar, and Xe in primitive Solar System materials studied in terrestrial laboratories and how the Rosetta data acquired with the ROSINA (Rosetta Orbiter Sensor for Ion and Neutral Analysis) and COSIMA (COmetary Secondary Ion Mass Analyzer) mass spectrometer fit into this picture. The H, Si, S, and Xe isotope data of comet 67P/CG suggest that this comet might be particularly primitive and might have preserved large amounts of unprocessed presolar matter. We address the question whether the refractory Si component of 67P/CG contains a presolar isotopic fingerprint from a nearby Type II supernova (SN) and discuss to which extent C and O isotope anomalies originating from presolar grains should be observable in dust from 67P/CG. Finally, we explore whether the isotopic fingerprint of a potential late SN contribution to the formation site of 67P/CG in the solar nebula can be seen in the volatile component of 67P/CG.  相似文献   
85.
After 25 years of laboratory research on protoplanetary dust agglomeration, a consistent picture of the various processes that involve colliding dust aggregates has emerged. Besides sticking, bouncing and fragmentation, other effects, like, e.g., erosion or mass transfer, have now been extensively studied. Coagulation simulations consistently show that \(\upmu\mbox{m}\)-sized dust grains can grow to mm- to cm-sized aggregates before they encounter the bouncing barrier, whereas sub-\(\upmu\mbox{m}\)-sized water-ice particles can directly grow to planetesimal sizes. For siliceous materials, other processes have to be responsible for turning the dust aggregates into planetesimals. In this article, these processes are discussed, the physical properties of the emerging dusty or icy planetesimals are presented and compared to empirical evidence from within and without the Solar System. In conclusion, the formation of planetesimals by a gravitational collapse of dust “pebbles” seems the most likely.  相似文献   
86.
We present the status and open problems of nucleosynthesis in supernova explosions of both types, responsible for the production of the intermediate mass, Fe-group and heavier elements (with the exception of the main s-process). Constraints from observations can be provided through individual supernovae (SNe) or their remnants (e.g. via spectra and gamma-rays of decaying unstable isotopes) and through surface abundances of stars which witness the composition of the interstellar gas at their formation. With a changing fraction of elements heavier than He in these stars (known as metallicity) the evolution of the nucleosynthesis in galaxies over time can be determined. A complementary way, related to gamma-rays from radioactive decays, is the observation of positrons released in \(\beta^{+}\)-decays, as e.g. from \(^{26}\mbox{Al}\), \(^{44}\mbox{Ti}\), \(^{56,57}\mbox{Ni}\) and possibly further isotopes of their decay chains (in competition with the production of \(e^{+}e^{-}\) pairs in acceleration shocks from SN remnants, pulsars, magnetars or even of particle physics origin). We discuss (a) the role of the core-collapse supernova explosion mechanism for the composition of intermediate mass, Fe-group (and heavier?) ejecta, (b) the transition from neutron stars to black holes as the final result of the collapse of massive stars, and the relation of the latter to supernovae, faint supernovae, and gamma-ray bursts/hypernovae, (c) Type Ia supernovae and their nucleosynthesis (e.g. addressing the \(^{55}\mbox{Mn}\) puzzle), plus (d) further constraints from galactic evolution, \(\gamma\)-ray and positron observations. This is complemented by the role of rare magneto-rotational supernovae (related to magnetars) in comparison with the nucleosynthesis of compact binary mergers, especially with respect to forming the heaviest r-process elements in galactic evolution.  相似文献   
87.
Internal processes in icy satellites, e.g. the exchange of material from the subsurface to the surface or processes leading to volcanism and resurfacing events, are a consequence of the amount of energy available in the satellites’ interiors. The latter is mainly determined shortly after accretion by the amount of radioactive isotopes incorporated in the silicates during the accretion process. However, for satellites—as opposed to single objects—important contributions to the energy budget on long time-scales can come from the interaction with other satellites (forcing of eccentricities of satellites in resonance) and consequently from the tidal interaction with the primary planet. Tidal evolution involves both changes of the rotation state—usually leading to the 1:1 spin orbit coupling—and long-term variations of the satellite orbits. Both processes are dissipative and thus connected with heat production in the interior. The way heat is transported from the interior to the surface (convection, conduction, (cryo-) volcanism) is a second main aspect that determines how internal processes in satellites work. In this chapter we will discuss the physics of heat production and heat transport as well as the rotational and orbital states of satellites. The relevance of the different heat sources for the moons in the outer solar system are compared and discussed.  相似文献   
88.
We consider transfers with low thrust in an arbitrary field of forces. The modified method of transporting trajectory [1–4] is used for optimization of the transfers. The complexity of finding the transporting trajectory of a preset type can be the main obstacle to application of this method. This challenge is solved for the three-body problem in the Hill motion model. Numerical analysis of the method is performed using an example of the transfers to halo-orbits around the solar-terrestrial libration points.  相似文献   
89.
The 2018 InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) Mission has the mission goal of providing insitu data for the first measurement of the geothermal heat flow of Mars. The Heat Flow and Physical Properties Package (HP3) will take thermal conductivity and thermal gradient measurements to approximately 5 m depth. By necessity, this measurement will be made within a few meters of the lander. This means that thermal perturbations from the lander will modify local surface and subsurface temperature measurements. For HP3’s sensitive thermal gradient measurements, this spacecraft influence will be important to model and parameterize. Here we present a basic 3D model of thermal effects of the lander on its surroundings. Though lander perturbations significantly alter subsurface temperatures, a successful thermal gradient measurement will be possible in all thermal conditions by proper (\(>3~\mbox{m}\) depth) placement of the heat flow probe.  相似文献   
90.
The Juno Radiation Monitoring (RM) Investigation   总被引:1,自引:0,他引:1  
The Radiation Monitoring Investigation of the Juno Mission will actively retrieve and analyze the noise signatures from penetrating radiation in the images of Juno’s star cameras and science instruments at Jupiter. The investigation’s objective is to profile Jupiter’s \(>10\mbox{-MeV}\) electron environment in regions of the Jovian magnetosphere which today are still largely unexplored. This paper discusses the primary instruments on Juno which contribute to the investigation’s data suite, the measurements of camera noise from penetrating particles, spectral sensitivities and measurement ranges of the instruments, calibrations performed prior to Juno’s first science orbit, and how the measurements may be used to infer the external relativistic electron environment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号