We consider some novel concepts for thermal properties experiments aboard lunar landers or rovers, that may lead to an improved understanding of both the structure of the lunar near surface layers and the lunar thermal history. The new instruments could be developed using the experience and heritage from recently developed systems, like the Rosetta Lander thermal conductivity experiment MUPUS and existing designs used for terrestrial measurements of thermal conductivity. We describe shortly the working principle of such sensors and the main challenges faced when using them in the airless regolith layers of the Moon or other airless bodies. In addition new concepts to create appropriate drill holes for thermal and other measurements in the lunar regolith are discussed. 相似文献
在大气多路径和噪声的条件下,高斯白噪声会造成滑动频谱方法获得的弯曲角与真值之间的偏离,无法获得较好的反演结果。为此,文章提出了一种改进的滑动频谱方法,即利用信号的振幅和谱能量信息对滑动频谱方法进行修正,削弱了信号中噪声的影响,与真值较为接近。分别用改进前后两种方法对中华卫星三号计划(Constellation Observing System for Meteorology, Ionosphere and Climate,COSMIC)的掩星进行反演,并将其折射率计算结果和通过全谱反演方法获得的折射率一起,与欧洲中期天气预报中心(European Centre for Medium Range Weather Forecasts,ECMWF)的分析场资料进行了统计比较。结果表明:改进的滑动频谱方法删除了信号中的部分噪声,减少了系统偏差;与全谱反演方法进行比较,发现两者具有相当的反演精度。 相似文献
We investigate the ionospheric total electron content (TEC) anomalies occurred in the Qinghai-Tibet region before three large earthquakes (M > 7.0). The temporal and spatial TEC variations were used to detect the ionospheric possible precursors of these earthquakes. We identified two TEC enhancements in the afternoon local time 9 days and 2–3 days before each earthquake, between which a TEC decrement occurred 3–6 days before earthquakes. These anomalies happened in the area of about 30° in latitude and the maximum is localized equatorward from the epicenters. These TEC anomalies can be found in all three earthquakes regardless the geomagnetic conditions. The features of these anomalies have something in common and may have differences from those caused by geomagnetic storms. Our results suggest that these ionospheric TEC perturbations may be precursors of the large earthquakes. 相似文献
Integrity is the ability of Global Navigation Satellite Systems (GNSS) to detect faults in measurements and provide timely warnings to users and operators when the navigation system cannot meet the defined performance standards, which is of great importance for safety of life critical applications. Compared with both Receiver Autonomous Integrity Monitoring (RAIM) and ground based GNSS Integrity Channel (GIC) methods which are widely adopted nowadays, the Satellite Autonomous Integrity Monitoring (SAIM) method can be used to monitor orbit/ephemeris and clock errors, and has advantages in monitoring orbit and clock quality and providing instantaneous responses when faults happen. 相似文献
A regional tropospheric model can be constructed using surveys from GPS ground networks. Using this model the tropospheric delays of a kinematic station within the region can be interpolated. However, such a model is generally not suitable for an airborne platform high above the ground networks. In this paper, a method of constructing a regional tropospheric model for airborne GPS applications is described. First, the kinematic station in the air is projected onto the ground. Then the tropospheric delays at projected point are interpolated from those of the ground networks. Finally, the tropospheric delays at projected point are extended upward to the airborne platform using pressure and temperature gradients and humidity exponential function. For validation of this method, the data of airborne campaign carried out by BKG in cooperation with GFZ and BGR 2008 in the northern Alps are used. The results show that GPS kinematic positioning precision in height component can be improved using this method. 相似文献