首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   448篇
  免费   12篇
  国内免费   9篇
航空   295篇
航天技术   100篇
综合类   9篇
航天   65篇
  2021年   4篇
  2019年   5篇
  2018年   69篇
  2017年   37篇
  2016年   6篇
  2015年   5篇
  2014年   15篇
  2013年   11篇
  2012年   16篇
  2011年   33篇
  2010年   17篇
  2009年   16篇
  2008年   16篇
  2007年   10篇
  2006年   6篇
  2005年   7篇
  2004年   7篇
  2003年   12篇
  2002年   19篇
  2001年   21篇
  2000年   6篇
  1999年   11篇
  1998年   3篇
  1997年   3篇
  1996年   3篇
  1995年   5篇
  1994年   5篇
  1993年   6篇
  1992年   6篇
  1988年   3篇
  1987年   3篇
  1985年   5篇
  1984年   6篇
  1983年   6篇
  1982年   5篇
  1981年   9篇
  1980年   2篇
  1979年   2篇
  1978年   4篇
  1977年   3篇
  1976年   3篇
  1975年   3篇
  1974年   2篇
  1973年   2篇
  1971年   3篇
  1970年   4篇
  1969年   4篇
  1968年   2篇
  1967年   3篇
  1965年   2篇
排序方式: 共有469条查询结果,搜索用时 171 毫秒
461.
462.
A coronal explosion is a density wave observed in X-ray images of solar flares. The wave occurs at the end of the impulsive phase, which is the time at which the flare's thermal energy content has reached its maximum value. It starts in a small area from where it spreads out, mainly into one hemisphere, with velocities that tend to rapidly decrease with time, and which are between ~ 103 and a few tens of km s?1. We interpret them as magneto-hydrodynamic waves that (mainly) move downward from the low corona into denser regions.  相似文献   
463.
Observations of Jupiter's radio emission were made at a frequency of 1412 MHz (21cm) in 1977 and at 4885 MHz (6cm) in 1978 using the Westerbork Synthesis Radio telescope in the Netherlands. The thermal disk temperatures at these wavelengths yield values of 320±20 K at 21 cm and 220±8 K at 6 cm. The first value requires an overabundance of ammonia by a factor of three with respect to the solar value, the second one is in agreement with the value expected for a convective model atmosphere with solar abundances for all chemical elements. The data at this wavelength however show no or very little limb darkening on the planet, indicating that there is a layered rather than a uniformly mixed atmosphere. A sudden increase in the ammonia abundance by a factor of about three below the 210–220 K level is proposed to explain this fact and also both derived disk temperatures.  相似文献   
464.
High resolution radio data of Saturn have been obtained at 1.3, 2, 6, and 21 cm, at different inclination angles of the ring plane. Preliminary results of limb darkening curves on the planet and optical depth measurements in the rings are described.  相似文献   
465.
From the discovery that Venus has an atmosphere during the 1761 transit by M. Lomonosov to the current exploration of the planet by the Akatsuki orbiter, we continue to learn about the planet’s extreme climate and weather. This chapter attempts to provide a comprehensive but by no means exhaustive review of the results of the atmospheric thermal structure and radiative balance since the earlier works published in Venus and Venus II books from recent spacecraft and Earth based investigations and summarizes the gaps in our current knowledge. There have been no in-situ measurements of the deep Venus atmosphere since the flights of the two VeGa balloons and landers in 1985 (Sagdeev et al., Science 231:1411–1414, 1986). Thus, most of the new information about the atmospheric thermal structure has come from different remote sensing (Earth based and spacecraft) techniques using occultations (solar infrared, stellar ultraviolet and orbiter radio occultations), spectroscopy and microwave, short wave and thermal infrared emissions. The results are restricted to altitudes higher than about 40 km, except for one investigation of the near surface static stability inferred by Meadows and Crisp (J. Geophys. Res. 101:4595–4622, 1996) from 1 \(\upmu\)m observations from Earth. Little information about the lower atmospheric structure is possible below about 40 km altitude from radio occultations due to large bending angles. The gaps in our knowledge include spectral albedo variations over time, vertical variation of the bulk composition of the atmosphere (mean molecular weight), the identity, properties and abundances of absorbers of incident solar radiation in the clouds. The causes of opacity variations in the nightside cloud cover and vertical gradients in the deep atmosphere bulk composition and its impact on static stability are also in need of critical studies. The knowledge gaps and questions about Venus and its atmosphere provide the incentive for obtaining the necessary measurements to understand the planet, which can provide some clues to learn about terrestrial exoplanets.  相似文献   
466.
We review the geochemical observations of water, \(\mbox{D}/\mbox{H}\) and volatile element abundances of the inner Solar System bodies, Mercury, Venus, the Moon, and Mars. We focus primarily on the inventories of water in these bodies, but also consider other volatiles when they can inform us about water. For Mercury, we have no data for internal water, but the reducing nature of the surface of Mercury would suggest that some hydrogen may be retained in its core. We evaluate the current knowledge and understanding of venusian water and volatiles and conclude that the venusian mantle was likely endowed with as much water as Earth of which it retains a small but non-negligible fraction. Estimates of the abundance of the Moon’s internal water vary from Earth-like to one to two orders of magnitude more depleted. Cl, K, and Zn isotope anomalies for lunar samples argue that the giant impact left a unique geochemical fingerprint on the Moon, but not the Earth. For Mars, an early magma ocean likely generated a thick crust; this combined with a lack of crustal recycling mechanisms would have led to early isolation of the Martian mantle from later delivery of water and volatiles from surface reservoirs or late accretion. The abundance estimates of Martian mantle water are similar to those of the terrestrial mantle, suggesting some similarities in the water and volatile inventories for the terrestrial planets and the Moon.  相似文献   
467.
Spatial, energy and angular distributions of ion fluxes in the Earth’s radiation belts (ERB) near the equatorial plane, at middle geomagnetic latitudes and at low altitudes are systematically reviewed herein. Distributions of all main ion components, from protons to Fe (including hydrogen and helium isotopes), and their variations under the action of solar and geomagnetic activity are considered. For ions with \(Z\geq 2\) and especially for ions with \(Z \geq 9\), these variations are much more than for protons, and these have no direct connection with the intensity of magnetic storms (\(Z\) is the charge of the atomic nucleus with respect to the charge of the proton). The main physical mechanisms for the generation of ion fluxes in the ERB and the losses of these ions are considered. Solar wind, Solar Cosmic Rays (SCR), Galactic Cosmic Rays (GCR), and Anomalous component of Cosmic Rays (ACR) as sources of ions in the ERB are considered.  相似文献   
468.
The NASA Ionospheric Connection Explorer Far-Ultraviolet spectrometer, ICON FUV, will measure altitude profiles of the daytime far-ultraviolet (FUV) OI 135.6 nm and N2 Lyman-Birge-Hopfield (LBH) band emissions that are used to determine thermospheric density profiles and state parameters related to thermospheric composition; specifically the thermospheric column O/N2 ratio (symbolized as \(\Sigma\)O/N2). This paper describes the algorithm concept that has been adapted and updated from one previously applied with success to limb data from the Global Ultraviolet Imager (GUVI) on the NASA Thermosphere Ionosphere Mesosphere Energetics and Dynamics (TIMED) mission. We also describe the requirements that are imposed on the ICON FUV to measure \(\Sigma\)O/N2 over any 500-km sample in daytime with a precision of better than 8.7%. We present results from orbit-simulation testing that demonstrates that the ICON FUV and our thermospheric composition retrieval algorithm can meet these requirements and provide the measurements necessary to address ICON science objectives.  相似文献   
469.
Pulsars are natural cosmic clocks. On long timescales they rival the precision of terrestrial atomic clocks. Using a technique called pulsar timing, the exact measurement of pulse arrival times allows a number of applications, ranging from testing theories of gravity to detecting gravitational waves. Also an external reference system suitable for autonomous space navigation can be defined by pulsars, using them as natural navigation beacons, not unlike the use of GPS satellites for navigation on Earth. By comparing pulse arrival times measured on-board a spacecraft with predicted pulse arrivals at a reference location (e.g. the solar system barycenter), the spacecraft position can be determined autonomously and with high accuracy everywhere in the solar system and beyond. We describe the unique properties of pulsars that suggest that such a navigation system will certainly have its application in future astronautics. We also describe the on-going experiments to use the clock-like nature of pulsars to “construct” a galactic-sized gravitational wave detector for low-frequency (\(f_{GW}\sim 10^{-9} \text{--} 10^{-7}\) Hz) gravitational waves. We present the current status and provide an outlook for the future.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号