首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   0篇
航空   14篇
航天技术   10篇
航天   1篇
  2015年   1篇
  2012年   1篇
  2008年   3篇
  2007年   2篇
  2005年   3篇
  2004年   2篇
  2003年   1篇
  2001年   2篇
  1992年   1篇
  1991年   1篇
  1986年   1篇
  1985年   1篇
  1984年   2篇
  1982年   2篇
  1981年   2篇
排序方式: 共有25条查询结果,搜索用时 31 毫秒
11.
The objective of the 2009 Mars Science Laboratory (MSL), which is planned to follow the Mars Exploration Rovers and the Phoenix lander to the surface of Mars, is to explore and assess quantitatively a site on Mars as a potential habitat for present or past life. Specific goals include an assessment of the past or present biological potential of the target environment and a characterization of its geology and geochemistry. Included in the 10 investigations of the MSL rover is the Sample Analysis at Mars (SAM) instrument suite, which is designed to obtain trace organic measurements, measure water and other volatiles, and measure several light isotopes with experiment sequences designed for both atmospheric and solid-phase samples. SAM integrates a gas chromatograph, a mass spectrometer, and a tunable laser spectrometer supported by sample manipulation tools both within and external to the suite. The sub-part-per-billion sensitivity of the suite for trace species, particularly organic molecules, along with a mobile platform that will contain many kilograms of organic materials, presents a considerable challenge due to the potential for terrestrial contamination to mask the signal of martian organics. We describe the effort presently underway to understand and mitigate, wherever possible within the resource constraints of the mission, terrestrial contamination in MSL and SAM measurements.  相似文献   
12.
The intensity of the resonantly scattered Ly-α line of the gian planets depends on the scattering column length of atomic hydrogen above the methane layer and on the incident solar flux. We have obtained measurements of the Ly-α brightness of Jupiter and Saturn on December 19, 1979, with a time difference of 111 minutes, which is only slightly longer than the additional travel time for solar photons scattered at Saturn compared to those from Jupiter. This observational technique eliminates two major uncertainties — the use of different instruments and solar variability — affecting previous determinations of the relative brightness of the planets. The measured ratio of the brightness of the subsolar points is 3.0 ± 0.4 which agrees well with the ratio of the incident solar flux of 3.4. This implies approximately equal scattering column lengths of H on both planets.  相似文献   
13.
Analogies between interstellar and cometary matter can be found in their chemical compositions, both in the gaseous and solid phases, but also in the physical processes involved like evidence for ion-molecules reactions at low temperature and for ice irradiation processes. Such analogies can be observed from 3 types of measurements: interstellar spectra, cometary observations, and analyses of interplanetary dust particles, with the help of laboratory simulation experiments. Taking into account all the present available information, a compilation of the elemental abundances in interstellar matter and in comet Halley is derived, without any assumption about the dust to gas ratio. It is found that there is a significant apparent depletion of nitrogen, presently unexplained, in both interstellar and cometary materials.  相似文献   
14.
Considering the possibility of outgassing from some localized sources on Mars, we have developed a one-dimensional photochemical model that includes methane (CH4), sulfur dioxide (SO2) and hydrogen sulfide (H2S). Halogens were considered but were found to have no significant impact on the martian atmospheric chemistry. We find that the introduction of methane into the martian atmosphere results in the formation of mainly formaldehyde (CH2O), methyl alcohol (CH3OH) and ethane (C2H6), whereas the introduction of the sulfur species produces mainly sulfur monoxide (SO) and sulfuric acid (H2SO4). Depending upon the flux of the outgassed molecules from possible hot spots, some of these species and the resulting new molecules may be detectable locally, either by remote sensing (e.g., with the Planetary Fourier Spectrometer on Mars Express) or in situ measurements.  相似文献   
15.
The first unambiguous identification of ammonia in the upper atmosphere of Jupiter has been obtained from the observation of individual NH3 bands in an IUE high resolution spectrum in the 2100–2400 Å spectral range. The variation with wavelength of the strengths of these NH3 bands implies that the NH3 abundance has to be strongly reduced by photolysis in the upper jovian atmosphere. Preliminary analysis by means of scattering models shows that the ammonia mixing ratio cannot be constant with altitude. The mixing ratio NH3/H2 ranges from 5 10?8 to 5 10?7 at the 250 mb pressure level, and decreases as P or P2 toward higher altitudes.  相似文献   
16.
The detection of methane on Mars has been reported by three different teams in 2004. Two of them used ground-based high-resolution spectroscopy in the near infrared range. The third one used the Planetary Fourier Spectrometer aboard Mars Express. Among the data sets, two of them reported a mean CH4 mixing ratio of 10 ppb. However, these are marginal detections, which should be considered as tentative. The third (ground-based) data set, unpublished so far, seems to show evidence for strong localized sources of CH4, corresponding to mixing ratios as high as 250 ppb in some cases. However, the high values reported in 2003 were not confirmed by subsequent observations performed by the PFS instrument in 2004. In the absence of a refereed publication, it is difficult to judge if the high values are indeed correct. Assuming that they are, the lack of their confirmation by the PFS could have several explanations, including, among others, localized transient vents, or time variations in the methane destruction rate. A biogenic source was first suggested for the martian methane. However, later studies showed that an abiotic source such as hydrogeology can be just as effective. Further dedicated observations are obviously needed to firm up the detection and distribution of methane on Mars.  相似文献   
17.
MIRO: Microwave Instrument for Rosetta Orbiter   总被引:1,自引:0,他引:1  
The European Space Agency Rosetta Spacecraft, launched on March 2, 2004 toward Comet 67P/Churyumov-Gerasimenko, carries a relatively small and lightweight millimeter-submillimeter spectrometer instrument, the first of its kind launched into deep space. The instrument will be used to study the evolution of outgassing water and other molecules from the target comet as a function of heliocentric distance. During flybys of the asteroids (2867) Steins and (21) Lutetia in 2008 and 2010 respectively, the instrument will measure thermal emission and search for water vapor in the vicinity of these asteroids. The instrument, named MIRO (Microwave Instrument for the Rosetta Orbiter), consists of a 30-cm diameter, offset parabolic reflector telescope followed by two heterodyne receivers. Center-band operating frequencies of the receivers are near 190 GHz (1.6 mm) and 562 GHz (0.5 mm). Broadband continuum channels are implemented in both frequency bands for the measurement of near surface temperatures and temperature gradients in Comet 67P/Churyumov-Gerasimenko and the asteroids (2867) Steins and (21) Lutetia. A 4096 channel CTS (Chirp Transform Spectrometer) spectrometer having 180 MHz total bandwidth and 44 kHz resolution is, in addition to the continuum channel, connected to the submillimeter receiver. The submillimeter radiometer/spectrometer is fixed tuned to measure four volatile species – CO, CH3OH, NH3 and three, oxygen-related isotopologues of water, H2 16O, H2 17O and H2 18O. The basic quantities measured with the MIRO instrument are surface temperature, gas production rates and relative abundances, and velocity and excitation temperature of each species, along with their spatial and temporal variability. This paper provides a short discussion of the scientific objectives of the investigation, and a detailed discussion of the MIRO instrument system.  相似文献   
18.
Mars Science Laboratory’s Curiosity rover carries a set of five external verification standards in hermetically sealed containers that can be sampled as would be a Martian rock, by drilling and then portioning into the solid sample inlet of the Sample Analysis at Mars (SAM) suite. Each organic check material (OCM) canister contains a porous ceramic solid, which has been doped with a fluorinated hydrocarbon marker that can be detected by SAM. The purpose of the OCM is to serve as a verification tool for the organic cleanliness of those parts of the sample chain that cannot be cleaned other than by dilution, i.e., repeated sampling of Martian rock. SAM possesses internal calibrants for verification of both its performance and its internal cleanliness, and the OCM is not used for that purpose. Each OCM unit is designed for one use only, and the choice to do so will be made by the project science group (PSG).  相似文献   
19.
20.
In addition to the Viking in-situ mass spectrometry measurements, our knowledge of the Martian atmosphere comes from remote sensing spectroscopy from the ground and from space. In particular, infrared measurements from the Mariner 9, Viking, Phobos and MGS orbiters have provided information upon the thermal profile, the chemical composition, the stratospheric winds, some isotopic ratios, and the properties of suspended dust. However, further remote sensing monitoring is still needed for a better understanding of the water cycle, a more accurate knowledge of the minor species and the aerosol composition, an improved measurement of the hydrogen and oxygen isotopic ratios, and for a full mapping of the middle altitude winds. Some of these information will be provided with the Mars Express mission.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号