首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2500篇
  免费   7篇
  国内免费   6篇
航空   1226篇
航天技术   1007篇
综合类   5篇
航天   275篇
  2021年   14篇
  2019年   14篇
  2018年   41篇
  2017年   34篇
  2016年   25篇
  2015年   11篇
  2014年   52篇
  2013年   62篇
  2012年   50篇
  2011年   87篇
  2010年   66篇
  2009年   107篇
  2008年   151篇
  2007年   63篇
  2006年   46篇
  2005年   64篇
  2004年   71篇
  2003年   92篇
  2002年   46篇
  2001年   101篇
  2000年   45篇
  1999年   86篇
  1998年   85篇
  1997年   62篇
  1996年   63篇
  1995年   88篇
  1994年   97篇
  1993年   37篇
  1992年   59篇
  1991年   22篇
  1990年   28篇
  1989年   57篇
  1988年   20篇
  1987年   35篇
  1986年   21篇
  1985年   74篇
  1984年   42篇
  1983年   47篇
  1982年   55篇
  1981年   77篇
  1980年   26篇
  1979年   24篇
  1978年   23篇
  1977年   18篇
  1976年   15篇
  1975年   18篇
  1974年   12篇
  1972年   17篇
  1969年   14篇
  1966年   8篇
排序方式: 共有2513条查询结果,搜索用时 15 毫秒
461.
The possibility of constructing an optical scheme of a telescope for a small satellite based on mirrors with freeform surfaces and a curved photodetector is considered. It is shown that the use of a new element base allows the effective area of the main mirror to be maximized and the field of view up to 9.4 times to be increased in comparison with the classical scheme of the Ritchey–Chretien scheme in ensuring the high image quality.  相似文献   
462.
Basaltic glasses (hyaloclastite) are a widespread habitat for life in volcanic environments, yet their interior physical conditions are poorly characterized. We investigated the characteristics of exposed weathered basaltic glass from a surface outcrop in Iceland, using microprobes capable of continuous sensing, to determine whether the physical conditions in the rock interior are hospitable to microbial life. The material provided thermal protection from freeze-thaw and rapid temperature fluctuations, similar to data reported for other rock types. Water activity experiments showed that at moisture contents less than 13% wet weight, the glass and its weathering product, palagonite, had a water activity below levels suitable for bacterial growth. In pore spaces, however, these higher moisture conditions might be maintained for many days after a precipitation event. Gas exchange between the rock interior and exterior was rapid (< 10 min) when the rocks were dry, but when saturated with water, equilibration took many hours. During this period, we demonstrated the potential for low oxygen conditions within the rock caused by respiratory stimulation of the heterotrophic community within. These conditions might exist within subglacial environments during the formation of the rocks or in micro-environments in the interior of exposed rocks. The experiments showed that microbial communities at the site studied here could potentially be active for 39% of the year, if the depth of the community within the outcrop maintains a balance between access to liquid water and adequate protection from freezing. In the absence of precipitation, the interior of weathered basaltic glass is an extreme and life-limiting environment for microorganisms on Earth and other planets.  相似文献   
463.
The martian surface environment exhibits extremes of salinity, temperature, desiccation, and radiation that would make it difficult for terrestrial microbes to survive. Recent evidence suggests that martian soils contain high concentrations of MgSO? minerals. Through warming of the soils, meltwater derived from subterranean ice-rich regolith may exist for an extended period of time and thus allow the propagation of terrestrial microbes and create significant bioburden at the near surface of Mars. The current report demonstrates that halotolerant bacteria from the Great Salt Plains (GSP) of Oklahoma are capable of growing at high concentrations of MgSO? in the form of 2 M solutions of epsomite. The epsotolerance of isolates in the GSP bacterial collection was determined, with 35% growing at 2 M MgSO?. There was a complex physiological response to mixtures of MgSO? and NaCl coupled with other environmental stressors. Growth also was measured at 1 M concentrations of other magnesium and sulfate salts. The complex responses may be partially explained by the pattern of chaotropicity observed for high-salt solutions as measured by agar gelation temperature. Select isolates could grow at the high salt concentrations and low temperatures found on Mars. Survival during repetitive freeze-thaw or drying-rewetting cycles was used as other measures of potential success on the martian surface. Our results indicate that terrestrial microbes might survive under the high-salt, low-temperature, anaerobic conditions on Mars and present significant potential for forward contamination. Stringent planetary protection requirements are needed for future life-detection missions to Mars.  相似文献   
464.
H.  Q.Y. Zhang  N.T. Zhang   《Acta Astronautica》2009,65(7-8):1028-1031
Autonomous navigation of spacecrafts is a difficult task, however, which is a must in future deep space exploration. With multiple spacecrafts flying in space, this aim can be achieved by formation flying spacecraft (FFS) utilizing inverse time difference of arrival (ITDOA) and inverse difference Doppler (IDD) methods, which can locate the position of earth-station from one-way uplink signals in the FFS coordinate, and by way of conversion of coordinates, the position of FFS is achieved in earth-centered earth-fixed (ECEF) coordinate. The ability of neural network (NN) filter in navigation to extract position of spacecrafts from random measuring noise of signal arrival time and Doppler shift is studied with different radius of FFS and surveying parameters. The NN filter used by spacecraft group is new way of unidirectional autonomous navigation and is of high precision of hybrid navigation.  相似文献   
465.
The National Space Research Institute (INPE) is developing the first Brazilian Scientific Microsatellite (SACI-1) based on the vanguard technology and on the experience acquired through projects developed by Brazilian Space Program. The SACI-1 is a 750km polar orbit satellite. The spacecraft will combine spin stabilization with geomagnetic control and has a total mass of 60 kg. The overall dimensions are 640×470×470 mm. The SACI-1 satellite shall be launched together with CBERS (China-Brazil Earth Resource Satellite). Its platform is being designed for multiple mission applications. The Brazilian Academy of Sciences has selected four scientific payloads that characterize the mission. The scientific experiments are: ORCAS (Solar and Anomalous Cosmic Rays Observation in the Magnetosphere), PLASMEX (Study of Plasma Bubbles), FOTSAT (Airglow Photometer), and MAGNEX (Geomagnetic Experiment).  相似文献   
466.
Under ESA contract an industrial consortium including Aboa Space Research Oy (ASRO), the Astronomical Institute of the University of Bern (AIUB), and the Dutch National Aerospace Laboratory (NLR), proposed the observation concept, developed a suitable sensor architecture, and assessed the performance of a space-based optical (SBO) telescope in 2005. The goal of the SBO study was to analyse how the existing knowledge gap in the space debris population in the millimetre and centimetre regime may be closed by means of a passive optical instrument. The SBO instrument was requested to provide statistical information on the space debris population in terms of number of objects and size distribution. The SBO instrument was considered to be a cost-efficient with 20 cm aperture and 6° field-of-view and having flexible integration requirements. It should be possible to integrate the SBO instrument easily as a secondary payload on satellites launched into low-Earth orbits (LEO), or into geostationary orbit (GEO). Thus the selected mission concept only allowed for fix-mounted telescopes, and the pointing direction could be requested freely. Since 2007 ESA focuses space surveillance and tracking activities in the Space Situational Awareness (SSA) preparatory program. Ground-based radars and optical telescopes are studied for the build-up and maintenance of a catalogue of objects. In this paper we analyse how the proposed SBO architecture could contribute to the space surveillance tasks survey and tracking. We assume that the SBO instrumentation is placed into a circular sun-synchronous orbit at 800 km altitude. We discuss the observation conditions of objects at higher altitude, and select an orbit close to the terminator plane. A pointing of the sensor orthogonal to the orbital plane with optimal elevation slightly in positive direction (0° and +5°) is found optimal for accessing the entire GEO regime within one day, implying a very good coverage of controlled objects in GEO, too. Simulations using ESA’s Program for Radar and Optical Observation Forecasting (PROOF) in the version 2005 and a GEO reference population extracted from DISCOS revealed that the proposed pointing scenario provides low phase angles together with low angular velocities of the objects crossing the field-of-view. Radiometric simulations show that the optimal exposure time is 1–2 s, and that spherical objects in GEO with a diameter of below 1 m can be detected. The GEO population can be covered under proper illumination nearly completely, but seasonal drops of the coverage are possible. Subsequent observations of objects are on average at least every 1.5 days, not exceeding 3 days at maximum. A single observation arc spans 3° to 5° on average. Using a simulation environment that connects PROOF to AIUB’s program system CelMech we verify the consistency of the initial orbit determination for five selected test objects on subsequent days as a function of realistic astrometric noise levels. The initial orbit determination is possible. We define requirements for a correlator process essential for catalogue build-up and maintenance. Each single observation should provide an astrometric accuracy of at least 1”–1.5” so that the initially determined orbits are consistent within a few hundred kilometres for the semi-major axis, 0.01 for the eccentricity, and 0.1° for the inclination.  相似文献   
467.
The identification of extant and, in some cases, extinct bacterial life is most convincingly and efficiently performed with modern high-resolution microscopy. Epifluorescence microscopy of microbial autofluorescence or in conjunction with fluorescent dyes is among the most useful of these techniques. We explored fluorescent labeling and imaging of bacteria in rock and soil in the context of in situ life detection for planetary exploration. The goals were two-fold: to target non-Earth-centric biosignatures with the greatest possible sensitivity and to develop labeling procedures amenable to robotic implementation with technologies that are currently space qualified. A wide panel of commercially available dyes that target specific biosignature molecules was screened, and those with desirable properties (i.e., minimal binding to minerals, strong autofluorescence contrast, no need for wash steps) were identified. We also explored the potential of semiconductor quantum dots (QDs) as bacterial and space probes. A specific instrument for space implementation is suggested and discussed.  相似文献   
468.
469.
The RF SRC—Institute of Biomedical Problems, Russian Academy of Sciences, developed Biorisk hardware to study the effects of long-term exposure of dormant forms of various organisms to outer space and used it to complete a series of experiments on the Russian Module (RM) of the International Space Station (ISS).The experiments were performed using prokaryotes (Bacillus bacteria) and eukaryotes (Penicillium, Aspergillus, and Cladosporium fungi), as well as spores, dormant forms of higher plants, insects, lower crustaceans, and vertebrates. The biological samples were housed in two containers that were exposed to outer space for 13 or 18 months. The results of the 18-month experiment showed that, in spite of harsher temperature than in the first study, most specimens remained viable.These experiments provided evidence that not only bacterial and fungal spores but also dormant forms of organisms that reached higher levels of evolutionary development had the capability to survive a long-term exposure to outer space. This observation suggests that they can be transferred on outer walls of space platforms during interplanetary missions.  相似文献   
470.
Lagrangian points L4 and L5 lie at 60° ahead of and behind the Moon in its orbit with respect to the Earth. Each one of them is a third point of an equilateral triangle with the base of the line defined by those two bodies. These Lagrangian points are stable for the Earth–Moon mass ratio. As so, these Lagrangian points represent remarkable positions to host astronomical observatories or space stations. However, this same distance characteristic may be a challenge for periodic servicing mission. This paper studies elliptic trajectories from an Earth circular parking orbit to reach the Moon’s sphere of influence and apply a swing-by maneuver in order to re-direct the path of a spacecraft to a vicinity of the Lagrangian points L4 and L5. Once the geocentric transfer orbit and the initial impulsive thrust have been determined, the goal is to establish the angle at which the geocentric trajectory crosses the lunar sphere of influence in such a way that when the spacecraft leaves the Moon’s gravitational field, its trajectory and velocity with respect to the Earth change in order to the spacecraft arrives at L4 and L5. In this work, the planar Circular Restricted Three Body Problem approximation is used and in order to avoid solving a two boundary problem, the patched-conic approximation is considered.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号