首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2488篇
  免费   8篇
  国内免费   4篇
航空   1221篇
航天技术   1001篇
综合类   5篇
航天   273篇
  2021年   13篇
  2019年   14篇
  2018年   41篇
  2017年   34篇
  2016年   25篇
  2015年   11篇
  2014年   50篇
  2013年   62篇
  2012年   51篇
  2011年   87篇
  2010年   63篇
  2009年   105篇
  2008年   151篇
  2007年   62篇
  2006年   46篇
  2005年   62篇
  2004年   71篇
  2003年   91篇
  2002年   46篇
  2001年   101篇
  2000年   45篇
  1999年   86篇
  1998年   85篇
  1997年   62篇
  1996年   63篇
  1995年   88篇
  1994年   97篇
  1993年   37篇
  1992年   59篇
  1991年   22篇
  1990年   28篇
  1989年   56篇
  1988年   20篇
  1987年   35篇
  1986年   21篇
  1985年   74篇
  1984年   42篇
  1983年   47篇
  1982年   55篇
  1981年   77篇
  1980年   26篇
  1979年   24篇
  1978年   22篇
  1977年   18篇
  1976年   15篇
  1975年   18篇
  1974年   12篇
  1972年   17篇
  1969年   13篇
  1966年   8篇
排序方式: 共有2500条查询结果,搜索用时 78 毫秒
961.
The design of the Lunar Exploration Neutron Detector (LEND) experiment is presented, which was optimized to address several of the primary measurement requirements of NASA’s Lunar Reconnaissance Orbiter (LRO): high spatial resolution hydrogen mapping of the Moon’s upper-most surface, identification of putative deposits of appreciable near-surface water ice in the Moon’s polar cold traps, and characterization of the human-relevant space radiation environment in lunar orbit. A comprehensive program of LEND instrument physical calibrations is discussed and the baseline scenario of LEND observations from the primary LRO lunar orbit is presented. LEND data products will be useful for determining the next stages of the emerging global lunar exploration program, and they will facilitate the study of the physics of hydrogen implantation and diffusion in the regolith, test the presence of water ice deposits in lunar cold polar traps, and investigate the role of neutrons within the radiation environment of the shallow lunar surface.  相似文献   
962.
    
The technique of lunar laser ranging (LLR) has for many decades contributed to cutting-edge tests of the fundamental nature of gravity. These include the best tests to date of the strong equivalence principle, the time-rate-of-change of the gravitational constant, gravitomagnetism, the inverse square law, and preferred frame effects. The phenomenologies of each are briefly discussed, followed by an extended discussion of gravitomagnetism. Finally, the new APOLLO project is summarized, which achieves range precision as low as one millimeter.  相似文献   
963.
The surface morphology of icy moons is affected by several processes implicating exchanges between their subsurfaces and atmospheres (if any). The possible exchange of material between the subsurface and the surface is mainly determined by the mechanical properties of the lithosphere, which isolates the deep, warm and ductile ice material from the cold surface conditions. Exchanges through this layer occur only if it is sufficiently thin and/or if it is fractured owing to tectonic stresses, melt intrusion or impact cratering. If such conditions are met, cryomagma can be released, erupting fresh volatile-rich materials onto the surface. For a very few icy moons (Titan, Triton, Enceladus), the emission of gas associated with cryovolcanic activity is sufficiently large to generate an atmosphere, either long-lived or transient. For those moons, atmosphere-driven processes such as cryovolcanic plume deposition, phase transitions of condensable materials and wind interactions continuously re-shape their surfaces, and are able to transport cryovolcanically generated materials on a global scale. In this chapter, we discuss the physics of these different exchange processes and how they affect the evolution of the satellites’ surfaces.  相似文献   
964.
    
The magnetometer on the STEREO mission is one of the sensors in the IMPACT instrument suite. A single, triaxial, wide-range, low-power and noise fluxgate magnetometer of traditional design—and reduced volume configuration—has been implemented in each spacecraft. The sensors are mounted on the IMPACT telescoping booms at a distance of ~3 m from the spacecraft body to reduce magnetic contamination. The electronics have been designed as an integral part of the IMPACT Data Processing Unit, sharing a common power converter and data/command interfaces. The instruments cover the range ±65,536 nT in two intervals controlled by the IDPU (±512 nT; ±65,536 nT). This very wide range allows operation of the instruments during all phases of the mission, including Earth flybys as well as during spacecraft test and integration in the geomagnetic field. The primary STEREO/IMPACT science objectives addressed by the magnetometer are the study of the interplanetary magnetic field (IMF), its response to solar activity, and its relationship to solar wind structure. The instruments were powered on and the booms deployed on November 1, 2006, seven days after the spacecraft were launched, and are operating nominally. A magnetic cleanliness program was implemented to minimize variable spacecraft fields and to ensure that the static spacecraft-generated magnetic field does not interfere with the measurements.  相似文献   
965.
    
The status of computational tests for establishing matrix positive semidefiniteness and positive definiteness is reviewed. Two pervasive real-time tests that have been used for many years in varied applications to ensure that computed covariances encountered in Kalman filter applications are positive definite and discussed. Structural representations of covariance matrices are reviewed as a prelude to constructing a counterexample and demonstrating that it refutes these real-time tests. It is maintained that the latter are bogus approaches despite the fact that they are pervasive. It is suggested that such bogus tests arose as an attempt to fill the need for a quick check (over the entire mission time) of the massive number of matrices computationally encountered in real-time applications  相似文献   
966.
    
The Heavy Ion Counter on the Galileo spacecraft will monitor energetic heavy nuclei of the elements from C to Ni, with energies from 6 to 200 MeV nucl-1. The instrument will provide measurements of trapped heavy ions in the Jovian magnetosphere, including those high-energy heavy ions with the potential for affecting the operation of the spacecraft electronic circuitry. We describe the instrument, which is a modified version of the Voyager CRS instrument.  相似文献   
967.
    
General principles are outlined for the design of space infrared telescopes intended to cool by radiation to the lowest temperatures attainable without the use of on-board cryogens, and assuming on-orbit cooling after a warm launch. Maximum protection from solar and earth heating, maximum radiating area and efficiency and minimum absorbing area and absorptivity are the obvious basic criteria. The optimised design is a short, fat telescope surrounded by a series of radiation shields, each cooled by its own radiator. Maximising the longitudinal conductivity of the radiation shields and of the telescope tube itself is important both to the on-orbit cooling time and the final achieveable temperature. Realistic designs take between 80 and 200 days to cool to within a few degrees of equilibrium temperatures, depending on the materials used. Great advantages accrue from the use of an orbit distant from earth. Both simple models and detailed simulations suggest that temperatures of 30 to 40 K are attainable in high earth orbits. Placing a radiatively cooled telescope in a halo orbit around the Lagrangian point L2 is a particularly attractive option and significantly lower temperatures can be achieved there than in Earth orbit. Optimised radiative cooling is an important element of the small Japanese mission SMIRT. We suggest that a combination of an ESA Medium-sized Mission with a NASA Explorer to send a 2m+ telescope to an L2 halo orbit would provide a cost-effective and powerful long-duration facility for the early 21st century.  相似文献   
968.
    
Variations in the magnetic pressure and flux blocking by starspots during the magnetic cycle of the cool semidetached component of an Algol binary may cause cyclic changes in the quadrupole moment and moment of inertia of the star which can cause alternate period changes. Since several different processes and timescales are involved, the orbital period changes may not correlate strongly with the indicators of magnetic activity. The structural changes in the semidetached component can also modulate the mass transfer rate. Sub-Keplerian velocities, supersonic turbulence, and high temperature regions in circumstellar material around the accreting star may all be a consequence of magnetic fields embedded in the flow. Models for the evolution of Algols which include the effects of angular momentum loss (AML) through a magnetized wind may have underestimated the AML rate by basing it on results from main sequence stars. Evolved stars appear to have higher AML rates, and there may be additional AML in a wind from the accretion disk.  相似文献   
969.
    
Stewart  R. T.  Slee  O. B.  Budding  E.  Coates  D. W.  Thompson  K.  Bunton  John D. 《Space Science Reviews》1989,50(1-2):367-367
Space Science Reviews -  相似文献   
970.
    
For pt. I see ibid., vol. 37, no. 4, pp. 1194-1206 (2001).This paper presents the derivation of a polarimetric coherent adaptive scheme to detect a radar target against a non-Gaussian background. This completes the results presented in Part I for the Gaussian background. A Texture Free-Generalized Likelihood Ratio Test (TF-GLRT) detector is derived that exploits the polarimetric characteristics of the received radar echoes to improve the detection performance. The proposed polarimetric detector is shown to have Constant False Alarm Rate (CFAR) when operating against compound-Gaussian clutter with unknown parameters. Its performance is fully characterized by both theoretical analysis and simulation. Moreover, the application to recorded radar data demonstrates the performance improvement achievable in practice  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号