首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7293篇
  免费   29篇
  国内免费   21篇
航空   3704篇
航天技术   2577篇
综合类   25篇
航天   1037篇
  2021年   49篇
  2019年   46篇
  2018年   103篇
  2017年   72篇
  2016年   63篇
  2015年   40篇
  2014年   138篇
  2013年   168篇
  2012年   160篇
  2011年   235篇
  2010年   172篇
  2009年   277篇
  2008年   364篇
  2007年   175篇
  2006年   143篇
  2005年   180篇
  2004年   183篇
  2003年   247篇
  2002年   140篇
  2001年   249篇
  2000年   137篇
  1999年   208篇
  1998年   221篇
  1997年   164篇
  1996年   210篇
  1995年   259篇
  1994年   233篇
  1993年   143篇
  1992年   187篇
  1991年   84篇
  1990年   91篇
  1989年   181篇
  1988年   79篇
  1987年   84篇
  1986年   76篇
  1985年   218篇
  1984年   187篇
  1983年   156篇
  1982年   184篇
  1981年   220篇
  1980年   79篇
  1979年   84篇
  1978年   66篇
  1977年   50篇
  1976年   49篇
  1975年   75篇
  1974年   56篇
  1973年   38篇
  1972年   66篇
  1969年   40篇
排序方式: 共有7343条查询结果,搜索用时 484 毫秒
751.
For investigations of the isolated magnetospheric substorm the ground-based and satellite geophysical data are discussed. The active phase of the substorm has two parts: an active-convective phase and a classical active phase. The analysed data show that the breakup of the substorm takes place at closed and not very much stretched magnetic field lines.  相似文献   
752.
Experimental data on molecular mechanisms are essential for understanding the bioeffects of radiation and for developing biophysical models, which can help in determining the shape of dose-response curves at very low doses, e.g., doses less than 1 cGy. Although it has been shown that ionizing radiation can cause neoplastic cell transformation directly, that high-LET heavy ions in general can be more effective than photons in transforming cells, and that the radiogenic cell transformation is a multi-step process [correction of processes], we know very little about the molecular nature of lesions important for cell transformation, the relationship between lethal and transformational damages, and the evolution of initial damages into final chromosomal aberrations which alter the growth control of cells. Using cultured mouse embryo cells (C3H10T1/2) as a model system, we have collected quantitative data on dose-response curves for heavy ions with various charges and energies. An analysis of these quantitative data suggested that two DNA breaks formed within 80 angstroms may cause cell transformation and that two DNA breaks formed within 20 angstroms may be lethal. Through studies with restriction enzymes which produce DNA damages at specific sites, we have found that DNA double strand breaks, including both blunt- and cohesive-ended breaks, can cause cell transformation in vitro. These results indicate that DNA double strand breaks can be important primary lesions for radiogenic cell transformation and that blunt-ended double strand breaks can form lethal as well as transformational damages due to misrepair or incomplete repair in the cell. The RBE-LET relationship is similar for HGPRT gene mutation, chromosomal deletion, and cell transformation, suggesting common lesions may be involved in these radiation effects. The high RBE of high-LET radiation for cell killing and neoplastic cell transformation is most likely related to its effectiveness in producing DNA double strand breaks in mammalian cells. At present the role of oncogenes in radiation cell transformation is unclear.  相似文献   
753.
Two important elements in the avionics suite of modern aircraft are: the flight control system (FCS) and the flight management system (FMS). The FCS provides the capability to stabilize and control the aircraft, while the FMS is responsible for flight planning and navigation. A clear trend in the aerospace industry is to place greater reliance on software systems, and many FCS and FMS subsystems are implemented primarily in software. For example, within the FCS is the flight guidance system (FGS) that generates roll and pitch guidance commands. Similarly, within the FMS is the vertical navigation (VNAV) function that acts like a third crew member in the cockpit, ordering mode change requests and resetting target altitude values to enable the aircraft to track the vertical flight plan. We have developed formal, executable models of the requirements for the mode logic of a FGS and for portions of the VNAV functionality. We have also conducted a comprehensive software safety analysis on the FGS mode logic model, and are completing the analysis of the VNAV model. This analysis uses as its starting point several "traditional" safety analysis techniques such as a functional hazard assessment (FHA), a fault tree analysis (FTA), and a failure mode effects analysis (FMEA). However, we are also using formal methods techniques known as model checking and theorem proving to verify the presence of safety properties in the model. This paper summarizes the (now completed) safety analysis that was performed on the FGS model, and highlights the similarities and differences with the (still on-going) safety analysis of the FMS model. In particular, we summarize progress made to date in the use of formal methods to verify the presence of the required safety properties in the models themselves.  相似文献   
754.
In the ASTRO-DABS concept for surveillance and data link, aircraft are interrogated by one of three geostationary transmitter satellites, each covering 1/3 of the contiguous United States. Interrogation scheduling involves a roll call such that aircraft responses to receiving satellites do not overlap (garble). A simple approach is developed which utilizes range ordering of aircraft with respect to transmitter satellites, but is independent of receiver satellite locations and aircraft distribution. Bounds on roll-call duration are established, showing that interrogation of 80 000 aircraft requires between 4.0 and 6.4 seconds with the ASTRO-DABS transmission format. If aircraft distribution is regionally concentrated (i.e., clustered), the roll-call duration nears the lower bound, since fewer gaps between interrogations are needed to preclude garbling.  相似文献   
755.
Increased sensitivity and dynamic range of the instrumental techniques used in conjunction with experiments on ballistic ranges have brought to the fore many problems arising from contamination in the ranges themselves. This is seldom discussed when experimental results are presented but is frequently the controlling limitation on the accuracy of the measurements. The authors discuss contamination due to dirt and debris resultant from gun operation, gaseous impurities, and projectile-borne impurities as they have occurred at the Re-entry Simulating Range of Lincoln Laboratory. The effects of these contaminants on measurements are discussed and illustrated, and measures for controlling them are outlined. Finally, a particular range operation is described from the standpoint of impurity control.  相似文献   
756.
The microwave CLFM study was directed to generating 14 ?s S-band pulses of 1000 MHz bandwidth and an rms phase error of a few degrees. Over 972 MHz bandwidth, the sampled phase error relative to the reference was 7 degrees rms and 17 degrees peak, with a maximum Fourier component of 4 degrees. The FM pulse train is generated by a gated BWO driven by a stable linearizing waveform. Phase coherency during each pulse is obtained by a sampling technique, where the phase is corrected at intervals of 1/6 ?s, the RF phase having changed an integral number of cycles in each interval. Multiplication of the BWO signal by the sampling pulse train results in band-limited phase error pulses which are applied in a feedback loop. Pulse-to-pulse coherency is obtained by phase lock of the BWO starting frequency to the crystal reference. Feedback leveling holds the output constant to 0.3 dB. The basic MITRE technique was originally demonstrated at 10 MHz in 1964. Range results measured with the X-band model radar using the CLFM generator are given and confirm the phase errors of the CLFM.  相似文献   
757.
During the conceptual design of a re-entry vehicle, the vehicle shape and geometry can be varied and its impact on performance can be evaluated. In this study, the shape optimization of two classes of vehicles has been studied: a capsule and a winged vehicle. Their aerodynamic characteristics were analyzed using local-inclination methods, automatically selected per vehicle segment. Entry trajectories down to Mach 3 were calculated assuming trimmed conditions. For the winged vehicle, which has both a body flap and elevons, a guidance algorithm to track a reference heat-rate was used. Multi-objective particle swarm optimization was used to optimize the shape using objectives related to mass, volume and range. The optimizations show a large variation in vehicle performance over the explored parameter space. Areas of very strong non-linearity are observed in the direct neighborhood of the two-dimensional Pareto fronts. This indicates the need for robust exploration of the influence of vehicle shapes on system performance during engineering trade-offs, which are performed during conceptual design. A number of important aspects of the influence of vehicle behavior on the Pareto fronts are observed and discussed. There is a nearly complete convergence to narrow-wing solutions for the winged vehicle. Also, it is found that imposing pitch-stability for the winged vehicle at all angles of attack results in vehicle shapes which require upward control surface deflections during the majority of the entry.  相似文献   
758.
Theoretical studies of a field-free plasma incident upon a magnetic dipole lead to a closed magnetosphere with two neutral points in the noon magnetic meridian, at a latitude of ± 70°–75° and a geocentric distance of approximately 10 RE. The position of the neutral points with respect to the dipole axis is not greatly affected by the angle of incidence of the solar wind. Although the field magnitude near the neutral points is only a fraction of the dipole field, the direction is seen to reverse on opposite sides of the neutral point. Near the boundary the field direction is parallel to the boundary and tends to point towards the neutral point in the Northern hemisphere.  相似文献   
759.
760.
Measuring temperatures, mechanical loads and derived quantities precisely and reliably play an important role in spaceflight. With spacecraft becoming increasingly complex, upscaling of present telemetry techniques can become cumbersome. Additionally, there are entirely new sensory requirements, resulting from emerging technologies such as smart structures, active vibration damping and composite material health monitoring. It has been demonstrated in preceding studies that these measurements can be advantageously and efficiently carried out by means of fiber-optic systems. The most prominent fiber-optic strain and temperature sensor is the fiber Bragg grating. Typically, multiple fiber Bragg gratings are used to translate entire temperature and strain fields into an optical wavelength information. For the interrogation of these sensors, a broadband or scanning light source is required. Additional requirements with respect to the light source are high intensity and unpolarized illumination of the gratings. These constraints can be met by a light source that is based on amplified spontaneous emission in a rare-earth-doped fiber. In the presented work, a compact light source, adapted for measurement applications and targeted towards space applications, has been developed. The design of this light source is presented, as well as its implementation. The light source has been designed and tested for selected core aspects of space robustness and the results of these tests are summarized.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号