首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7293篇
  免费   29篇
  国内免费   21篇
航空   3704篇
航天技术   2577篇
综合类   25篇
航天   1037篇
  2021年   49篇
  2019年   46篇
  2018年   103篇
  2017年   72篇
  2016年   63篇
  2015年   40篇
  2014年   138篇
  2013年   168篇
  2012年   160篇
  2011年   235篇
  2010年   172篇
  2009年   277篇
  2008年   364篇
  2007年   175篇
  2006年   143篇
  2005年   180篇
  2004年   183篇
  2003年   247篇
  2002年   140篇
  2001年   249篇
  2000年   137篇
  1999年   208篇
  1998年   221篇
  1997年   164篇
  1996年   210篇
  1995年   259篇
  1994年   233篇
  1993年   143篇
  1992年   187篇
  1991年   84篇
  1990年   91篇
  1989年   181篇
  1988年   79篇
  1987年   84篇
  1986年   76篇
  1985年   218篇
  1984年   187篇
  1983年   156篇
  1982年   184篇
  1981年   220篇
  1980年   79篇
  1979年   84篇
  1978年   66篇
  1977年   50篇
  1976年   49篇
  1975年   75篇
  1974年   56篇
  1973年   38篇
  1972年   66篇
  1969年   40篇
排序方式: 共有7343条查询结果,搜索用时 265 毫秒
121.
The mission's success fully depends on the Payload Operations conducted during the space flight. The Ground Team has to be trained to assist the Space Crew, to replan the cosmonaut's activities when contingengies occurr onboard and to change or cancel Payload activities when required. In order to act efficiently during the mission, the Ground Team must be prepared in advance of the flight and able to operate special tools for tracking the mission's progress, anticipating problems and taking decisions in realtime.

This document sets out the approach for conducting such a preparation for Ground Operation. It will be focused on the Altaïr mission performed in July 1993 onboard the Russian Mir space station.  相似文献   

122.
This remote assistance trial, performed within the framework of the manned space flight Altaïr, was carried out by CADMOS (CNES), with the cooperation of the Sub-directorate of CNES Operational Systems, Medes, LBM of Tours and Christol Consultants. It consisted of supplying the cosmonaut performing the Orthostatism experiment (echograph acquisition) on board the Mir station with realtime assistance by an expert (LBM of Tours) working from the ground on the CADMOS premises. The various steps of the approach followed during the preparation phase are described, as well as the technical means of communication used between the Mir station and CADMOS.  相似文献   
123.
During 1986-1990 seven prime spacecrews (16 cosmonauts) have flown on-board the Mir orbital complex. The longest space mission duration was 366 days The principal objectives of the medical tasks were the maintenance of good health and performance of the spacecrews and conducting medical research programs which included study of the cardiovascular, motor, endocrine, blood, immune, and metabolic systems. Results obtained point to the ability of humans to readily adapt to a year-long stay in space and maintain good health and performance. Readaptation had a similar course as after other previous long-term space flights of up to 8 months in duration. Primary body system changes were not qualitatively different from findings after flights aboard the Salyut 6 and 7 space stations. In this case, during and after an 11-12 month flight, body system alterations were even less severe which was a result of adequate countermeasure use, their systematic and creative employment and maintenance of required environments to support life and work in space.  相似文献   
124.
A simplified model for the orbital and relative motion of a tethered satellite system is presented. The tether acts as a light elastic string with small structural damping but without bending stiffness. Its mass is taken into account in the calculation of the total kinetic and potential energies of the tethered system. This formulation allows the inclusion of the complete gravity gradient influence on the dynamics of the system. The resulting three-dimensional motion is separated in the centre of mass orbital motion on the one hand and the relative motion of the end-bodies on the other. No restrictions on length of the tether or on mass ratio of the end-masses are imposed. It is found that the frequencies and amplitudes of the longitudinal tether oscillations are realistic as long as the tether mass is less than that of the subsatellite.  相似文献   
125.
We consider a relationship between the difference in spectral indices of the spectra of single hadrons and all hadrons (snglh) and the difference in the indices of the spectra of galactic cosmic ray (GCR) protons and nuclei. It is demonstrated that at the mountain level the ratio (pZ)/(snglh) is always larger than unity, if (snglh) > 0.1. From the experimental value snglh = 0.4 ± 0.05 we derive that, in the vicinity of E = 10 TeV, pZ 0.49 ± 0.06 , i.e., p 3.09 ± 0.06.__________Translated from Kosmicheskie Issledovaniya, Vol. 43, No. 2, 2005, pp. 83–87.Original Russian Text Copyright © 2005 by Grigorov, Tolstaya.  相似文献   
126.
In Celestial Mechanics the triple close approach is a highly unstable phenomenon that leads very often to the formation of a very small binary escaping with a large velocity in the direction opposite to the escape of the third body.That third escaping body is generally either the smallest mass or the second smallest and it implies a very selective effect in star clusters: the lightest stars are statistically the first to be ejected.  相似文献   
127.
Two bed rest analog studies of space flight were performed; one 14 d and the other 28 d in duration. Exercise response was studied in detail during the 28 d study and following both the 14 d and 28 d studies. This paper relates the results of these studies to physiologic changes noted during and following space flight. The most consistent change noted after both bed rest and space flight is an elevated heart rate during exercise. A second consistent finding is a postflight or postbed rest reduction in cardiac stroke volume. Cardiac output changes were variable. The inability to simulate inflight activity levels and personal exercise makes a direct comparison between bed rest and the results from specific space flights difficult.  相似文献   
128.
Prediction that the various stresses of flight, particularly weightlessness, would bring about significant derangements in the metabolism of the musculoskeletal system has been based on various observations of long-term immobilized or inactive bed rest. The only attempt at controlled measurement of metabolic changes in space prior to Skylab, a study during the 14-day Gemini VII flight, revealed rather modest losses of important elements. The three astronauts of Skylab II consumed a planned day-by-day, quite constant, dietary intake of major metabolic elements in mixed foods and beverages and provided virtually complete collections of excreta for 31 days preflight, during the 28 days inflight, and for 17 days postflight. Analyses showed that, in varying degree among the crewmen, urinary calcium increased gradually during flight in a pattern similar to that observed in bed-rest studies: the mean plateau peak of urinary calcium excretion in the latter part of flight was double preflight levels. Fecal calcium excretion did not change significantly, but calcium balance, owing to the urinary calcium rise, became either negative or less positive than in preflight measurement. Increased excretion and negative balance of nitrogen and phosphorus indicated appreciable loss of muscle tissue in all three crewmen. Significant losses also occurred inflight in potassium, sodium, and magnesium. Based on the similarity in pattern and degree between these observations and those in bed rest of the losses in calcium, phosphorus, and nitrogen, musculoskeletal integrity would not be threatened in space flights of up to at least 3 months. However, if similar changes occur, indicative of continuing losses of these elements, in the planned Skylab flights for considerably more than 28 days, concern for capable musculoskeletal function should be serious for flights of very many months' duration, and greater research attention will need to be given to development of protective counter-measures.  相似文献   
129.
In the past, one of the major problems in performing scientific investigations in space has been the high cost of developing, integrating, and transporting scientific experiments into space. The limited resources of unmanned spacecraft, coupled with the requirements for completely automated operations, was another factor contributing to the high costs of scientific research in space. In previous space missions after developing, integrating and transporting costly experiments into space and obtaining successful data, the experiment facility and spacecraft have been lost forever, because they could not be returned to earth. The objective of this paper is to present how the utilization of the Spacelab System will result in cost benefits to the scientific community, and significantly reduce the cost of space operations from previous space programs.The following approach was used to quantify the cost benefits of using the Spacelab System to greatly reduce the operational costs of scientific research in space. An analysis was made of the series of activities required to combine individual scientific experiments into an integrated payload that is compatible with the Space Transportation System (STS). These activities, including Shuttle and Spacelab integration, communications and data processing, launch support requirements, and flight operations were analyzed to indicate how this new space system, when compared with previous space systems, will reduce the cost of space research. It will be shown that utilization of the Spacelab modular design, standard payload interfaces, optional Mission Dependent Equipment (MDE), and standard services, such as the Experiment Computer Operating System (ECOS), allow the user many more services than previous programs, at significantly lower costs. In addition, the missions will also be analyzed to relate their cost benefit contributions to space scientific research.The analytical tools that are being developed at MSFC in the form of computer programs that can rapidly analyze experiment to Spacelab interfaces will be discussed to show how these tools allow the Spacelab integrator to economically establish the payload compatibility of a Spacelab mission.The information used in this paper has been assimilated from the actual experience gained in integrating over 50 highly complex, scientific experiments that will fly on the Spacelab first and second missions. In addition, this paper described the work being done at the Marshall Space Flight Center (MSFC) to define the analytical integration tools and techniques required to economically and efficiently integrate a wide variety of Spacelab payloads and missions. The conclusions reached in this study are based on the actual experience gained at MSFC in its roles of Spacelab integration and mission managers for the first three Spacelab missions. The results of this paper will clearly show that the cost benefits of the Spacelab system will greatly reduce the costs and increase the opportunities for scientific investigation from space.  相似文献   
130.
Fluid and electrolyte shifts occuring during human spaceflight have been reported and investigated at the level of blood, cardio-vascular and renal responses. Very few data were available concerning the cerebral fluid and electrolyte adaptation to microgravity, even in animal models. It is the reason why we developed several studies focused on the effects of spaceflight (SLS-1 and SLS-2 programs, carried on NASA STS 40 and 56 missions, which were 9- and 14-day flights, respectively), on structural and functional features of choroid plexuses, organs which secrete 70–90 % of cerebrospinal fluid (CSF) and which are involved in brain homeostasis. Rats flown aboard space shuttles were sacrificed either in space (SLS-2 experiment, on flight day 13) or 4–8 hours after landing (SLS-1 and SLS-2 experiments). Quantitative autoradiography performed by microdensitometry and image analysis, showed that lateral and third ventricle choroid plexuses from rats flown for SLS-1 experiment demonstrated an increased number (about x 2) of binding sites to natriuretic peptides (which are known to be involved in mechanisms regulating CSF production). Using electron microscopy and immunocytochemistry, we studied the cellular response of choroid plexuses, which produce cerebrospinal fluid (CSF) in brain lateral, third and fourth ventricles. We demonstrated that spaceflight (SLS-2 experiment, inflight samples) induces changes in the choroidal cell structure (apical microvilli, kinocilia organization, vesicle accumulation) and protein distribution or expression (carbonic anhydrase II, water channels,…). These observations suggested a loss of choroidal cell polarity and a decrease in CSF secretion. Hindlimb-suspended rats displayed similar choroidal changes. All together, these results support the hypothesis of a modified CSF production in rats during long-term (9, 13 or 14 days) adaptations to microgravity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号