首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   250篇
  免费   6篇
  国内免费   5篇
航空   84篇
航天技术   40篇
综合类   6篇
航天   131篇
  2022年   2篇
  2020年   1篇
  2019年   3篇
  2018年   1篇
  2015年   1篇
  2013年   1篇
  2012年   8篇
  2011年   9篇
  2010年   2篇
  2009年   2篇
  2008年   9篇
  2007年   7篇
  2006年   7篇
  2005年   14篇
  2004年   7篇
  2003年   8篇
  2002年   6篇
  2001年   3篇
  2000年   2篇
  1999年   7篇
  1998年   16篇
  1997年   10篇
  1996年   10篇
  1995年   10篇
  1994年   9篇
  1993年   4篇
  1992年   5篇
  1991年   6篇
  1990年   9篇
  1989年   14篇
  1988年   6篇
  1987年   5篇
  1986年   4篇
  1985年   11篇
  1984年   6篇
  1983年   11篇
  1982年   8篇
  1981年   4篇
  1980年   1篇
  1979年   4篇
  1978年   5篇
  1977年   2篇
  1976年   1篇
排序方式: 共有261条查询结果,搜索用时 15 毫秒
241.
这是评论MX导弹喷管先进材料的连载第三篇文章。根据空军系统司令部的空间导弹系统组织的F07401—73—C—04223合同,航空喷气固体推进公司进行了本文所述的工作。计划包括喷管设计的选择和要求满足MX ADP(Advanced DeveloPment Program)目的的有关技术。本文概述了材料筛选试验、阐述选择材料的原则、所选择材料的性能、缩比尺寸喷管点火试验的结果和用于全尺寸试验的石墨喷管部件的说明等。  相似文献   
242.
Space radiation dosimetry measurements have been made on board the Space Shuttle. A newly developed active detector called "Real-time Radiation Monitoring Device (RRMD)" was used (Doke et al., 1995; Hayashi et al., 1995). The RRMD results indicate that low Linear Energy Transfer (LET) particles steadily penetrate around the South Atlantic Anomaly (SAA) without clear enhancement of dose equivalent and some daily periodic enhancements of dose equivalent due to high LET particles are seen at the lower geomagnetic cutoff regions (Doke et al., 1996). We also have been analyzing the space weather during the experiment, and found that the anomalous high-energy particle enhancement was linked to geomagnetic disturbance due to the high speed solar wind from a coronal hole. Additional analysis and other experiments are necessary for clarification of these phenomena. If a penetration of high-energy particles into the low altitude occurs by common geomagnetic disturbances, the prediction of geomagnetic activity becomes more important in the next Space Station's era.  相似文献   
243.
联合建模和仿真系统(J-MASS)已被确定为未来的软件建模结构。因此,它能在建模及仿真方面为国防部提供多年的技术支持。要实现联合建模和仿真系统就需要开发新技术。本文将对联合建模和仿真系统中可能采用的几种现行技术(可视编程、形式法及计算机辅助软件工程)进行述评。  相似文献   
244.
245.
In the frame of the EXPOSE-E mission on the Columbus external payload facility EuTEF on board the International Space Station, passive thermoluminescence dosimeters were applied to measure the radiation exposure of biological samples. The detectors were located either as stacks next to biological specimens to determine the depth dose distribution or beneath the sample carriers to determine the dose levels for maximum shielding. The maximum mission dose measured in the upper layer of the depth dose part of the experiment amounted to 238±10 mGy, which relates to an average dose rate of 408±16 μGy/d. In these stacks of about 8?mm height, the dose decreased by 5-12% with depth. The maximum dose measured beneath the sample carriers was 215±16 mGy, which amounts to an average dose rate of 368±27 μGy/d. These values are close to those assessed for the interior of the Columbus module and demonstrate the high shielding of the biological experiments within the EXPOSE-E facility. Besides the shielding by the EXPOSE-E hardware itself, additional shielding was experienced by the external structures adjacent to EXPOSE-E, such as EuTEF and Columbus. This led to a dose gradient over the entire exposure area, from 215±16 mGy for the lowest to 121±6 mGy for maximum shielding. Hence, the doses perceived by the biological samples inside EXPOSE-E varied by 70% (from lowest to highest dose). As a consequence of the high shielding, the biological samples were predominantly exposed to galactic cosmic heavy ions, while electrons and a significant fraction of protons of the radiation belts and solar wind did not reach the samples.  相似文献   
246.
The aim of this paper is to present the time profile of cosmic radiation exposure obtained by the Radiation Risk Radiometer-Dosimeter during the EXPOSE-E mission in the European Technology Exposure Facility on the International Space Station's Columbus module. Another aim is to make the obtained results available to other EXPOSE-E teams for use in their data analysis. Radiation Risk Radiometer-Dosimeter is a low-mass and small-dimension automatic device that measures solar radiation in four channels and cosmic ionizing radiation as well. The main results of the present study include the following: (1) three different radiation sources were detected and quantified-galactic cosmic rays (GCR), energetic protons from the South Atlantic Anomaly (SAA) region of the inner radiation belt, and energetic electrons from the outer radiation belt (ORB); (2) the highest daily averaged absorbed dose rate of 426 μGy d(-1) came from SAA protons; (3) GCR delivered a much smaller daily absorbed dose rate of 91.1 μGy d(-1), and the ORB source delivered only 8.6 μGy d(-1). The analysis of the UV and temperature data is a subject of another article (Schuster et al., 2012 ).  相似文献   
247.
Spore-forming bacteria are of particular concern in the context of planetary protection because their tough endospores may withstand certain sterilization procedures as well as the harsh environments of outer space or planetary surfaces. To test their hardiness on a hypothetical mission to Mars, spores of Bacillus subtilis 168 and Bacillus pumilus SAFR-032 were exposed for 1.5 years to selected parameters of space in the experiment PROTECT during the EXPOSE-E mission on board the International Space Station. Mounted as dry layers on spacecraft-qualified aluminum coupons, the "trip to Mars" spores experienced space vacuum, cosmic and extraterrestrial solar radiation, and temperature fluctuations, whereas the "stay on Mars" spores were subjected to a simulated martian environment that included atmospheric pressure and composition, and UV and cosmic radiation. The survival of spores from both assays was determined after retrieval. It was clearly shown that solar extraterrestrial UV radiation (λ≥110?nm) as well as the martian UV spectrum (λ≥200?nm) was the most deleterious factor applied; in some samples only a few survivors were recovered from spores exposed in monolayers. Spores in multilayers survived better by several orders of magnitude. All other environmental parameters encountered by the "trip to Mars" or "stay on Mars" spores did little harm to the spores, which showed about 50% survival or more. The data demonstrate the high chance of survival of spores on a Mars mission, if protected against solar irradiation. These results will have implications for planetary protection considerations.  相似文献   
248.
Varnali T  Edwards HG 《Astrobiology》2010,10(7):711-716
Cyanobacterial colonies produce the radiation-protectant biomolecule scytonemin as part of their response strategy for survival in environmentally stressed conditions in hot and cold deserts. These colonies frequently use sandstone rocks as host matrices for subsurface colonization, which is accompanied by a zone of depletion of iron and transportation of iron compounds to the mineral surface. It is suggested that an iron-scytonemin complex could feature in this survival strategy and facilitate the movement of iron through the rock. Calculations were carried out on several hypothetical iron-scytonemin complexes to evaluate the most stable structure energetically and examine the effect of the complexation of the biomolecule upon the electronic absorption characteristics of the radiation-protectant species. The implications for extraterrestrial planetary detection and analytical monitoring of an iron-scytonemin complex are assessed.  相似文献   
249.
Morphologically diverse structures that may constitute organic microfossils are reported from three remote and widely separated localities assigned to the ca. 3400?Ma Strelley Pool Formation in the Pilbara Craton, Western Australia. These localities include the Panorama, Warralong, and Goldsworthy greenstone belts. From the Panorama greenstone belt, large (> 40?μm) lenticular to spindle-like structures, spheroidal structures, and mat-forming thread-like structures are found. Similar assemblages of carbonaceous structures have been identified from the Warralong and Goldsworthy greenstone belts, though these assemblages lack the thread-like structures but contain film-like structures. All structures are syngenetic with their host sedimentary black chert, which is associated with stromatolites and evaporites. The host chert is considered to have been deposited in a shallow water environment. Rigorous assessment of biogenicity (considering composition, size range, abundance, taphonomic features, and spatial distributions) suggests that cluster-forming small (<15 μm) spheroids, lenticular to spindle-like structures, and film-like structures with small spheroids are probable microfossils. Thread-like structures are more likely fossilized fibrils of biofilm, rather than microfossils. The biogenicity of solitary large (>15?μm) spheroids and simple film-like structures is less certain. Although further investigations are required to confirm the biogenicity of carbonaceous structures from the Strelley Pool Formation, this study presents evidence for the existence of morphologically complex and large microfossils at 3400?Ma in the Pilbara Craton, which can be correlated to the contemporaneous, possible microfossils reported from South Africa. Although there is still much to be learned, they should provide us with new insights into the early evolution of life and shallow water ecosystems.  相似文献   
250.
Among many scientific objectives of lunar exploration, investigations on lunar soil become more and more attractive to the scientists duo to the existence of abundant 3He and ilmenite in the lunar soil and their possible utilization. Although the soil composition determination on the lunar surface is available by visible light spectrometer,γ/X-ray spectrometer etc, the evaluations on the total reserves of 3He and ilmenite in the lunar deep and on the thickness of the lunar soil are still impossible so far. In this paper, the authors first give a rough analysis of the microwave brightness temperature images of the lunar disc observed using the NRAO 12 Meter Telescope and Siberian Solar Radio Telescope; then introduce our researches on the microwave dielectric properties of lunar soil simulators; finally, discuss some basic relations between the microwave brightness temperature and lunar soil properties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号