首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5384篇
  免费   9篇
  国内免费   11篇
航空   2362篇
航天技术   1864篇
综合类   23篇
航天   1155篇
  2022年   17篇
  2021年   47篇
  2019年   28篇
  2018年   198篇
  2017年   148篇
  2016年   127篇
  2015年   53篇
  2014年   148篇
  2013年   178篇
  2012年   157篇
  2011年   232篇
  2010年   179篇
  2009年   282篇
  2008年   302篇
  2007年   172篇
  2006年   110篇
  2005年   145篇
  2004年   149篇
  2003年   184篇
  2002年   119篇
  2001年   206篇
  2000年   80篇
  1999年   134篇
  1998年   137篇
  1997年   94篇
  1996年   101篇
  1995年   158篇
  1994年   151篇
  1993年   72篇
  1992年   96篇
  1991年   30篇
  1990年   45篇
  1989年   90篇
  1988年   31篇
  1987年   52篇
  1986年   33篇
  1985年   132篇
  1984年   92篇
  1983年   86篇
  1982年   92篇
  1981年   145篇
  1980年   49篇
  1979年   39篇
  1978年   35篇
  1977年   32篇
  1976年   28篇
  1975年   32篇
  1974年   23篇
  1972年   29篇
  1969年   18篇
排序方式: 共有5404条查询结果,搜索用时 406 毫秒
301.
The Extreme Ultraviolet Imager Investigation for the IMAGE Mission   总被引:13,自引:0,他引:13  
Sandel  B.R.  Broadfoot  A.L.  Curtis  C.C.  King  R.A.  Stone  T.C.  Hill  R.H.  Chen  J.  Siegmund  O.H.W.  Raffanti  R.  Allred  DAVID D.  Turley  R. STEVEN  Gallagher  D.L. 《Space Science Reviews》2000,91(1-2):197-242
The Extreme Ultraviolet Imager (EUV) of the IMAGE Mission will study the distribution of He+ in Earth's plasmasphere by detecting its resonantly-scattered emission at 30.4 nm. It will record the structure and dynamics of the cold plasma in Earth's plasmasphere on a global scale. The 30.4-nm feature is relatively easy to measure because it is the brightest ion emission from the plasmasphere, it is spectrally isolated, and the background at that wavelength is negligible. Measurements are easy to interpret because the plasmaspheric He+ emission is optically thin, so its brightness is directly proportional to the He+ column abundance. Effective imaging of the plasmaspheric He+ requires global `snapshots in which the high apogee and the wide field of view of EUV provide in a single exposure a map of the entire plasmasphere. EUV consists of three identical sensor heads, each having a field of view 30° in diameter. These sensors are tilted relative to one another to cover a fan-shaped field of 84°×30°, which is swept across the plasmasphere by the spin of the satellite. EUVs spatial resolution is 0.6° or 0.1 R E in the equatorial plane seen from apogee. The sensitivity is 1.9 count s–1 Rayleigh–1, sufficient to map the position of the plasmapause with a time resolution of 10 min.  相似文献   
302.
Parker  D. E.  Basnett  T. A.  Brown  S. J.  Gordon  M.  Horton  E. B.  Rayner  N. A. 《Space Science Reviews》2000,94(1-2):309-320
A survey is given of the available instrumental data for monitoring and analysis of climatic variations. We focus on temperature measurements, both over land and ocean, at the surface and aloft.Over land, the older observations were subject to exposure changes which may not have been fully compensated. The effects of urbanization have been largely avoided in studies of climatic change over the last 150 years. There are few records for pre-1850 outside Europe and eastern North America, and the global network shows a recent decline. Over the ocean, sea surface temperature (SST) has been measured using buckets, engine intakes, hull sensors, buoys, and satellites. Many of these data have been effectively homogenized, but new challenges arise as observing systems evolve. Available SST and marine air temperature datasets begin in the 1850s. The data are concentrated in shipping lanes especially before 1900, and very sparse during the world wars, but additional historical data are being digitized.The radiosonde record is short (40 years) and has major gaps over the oceans, tropics and Southern Hemisphere. Instrumental heterogeneities are beginning to be assessed and removed using physical and statistical techniques. The MSU record is complete but only began in 1979, and is not highly resolved in the vertical: major biases, mainly affecting the lower-tropospheric retrieval, have been reduced as a result of recent analyses.Advanced interpolation or data-assimilation techniques are being applied to these data, but the results must be interpreted with care.  相似文献   
303.
Arnold  N.F.  Robinson  T.R. 《Space Science Reviews》2000,94(1-2):279-286
Recent observational evidence has suggested that variations in solar activity may affect winter stratospheric polar ozone and temperature levels. The paucity of direct sunlight available during this season points strongly to a dynamical mechanism. We have carried out several large ensemble experiments within the middle atmosphere and the coupled middle atmosphere and lower thermosphere to simulate the radiative/dynamical coupling via planetary waves for a range of solar fluxes. In the former case, the model response in the winter stratosphere was linear and of the order of the summer stratopause forcing, whilst in the latter, the level of correlation in the winter stratosphere remained high, but was diluted over a wider volume. The inclusion of the upper atmosphere enhanced the winter polar stratospheric response by a factor of three.  相似文献   
304.
The Cassini visual and infrared mapping spectrometer (VIMS) investigation is a multidisciplinary study of the Saturnian system. Visual and near-infrared imaging spectroscopy and high-speed spectrophotometry are the observational techniques. The scope of the investigation includes the rings, the surfaces of the icy satellites and Titan, and the atmospheres of Saturn and Titan. In this paper, we will elucidate the major scientific and measurement goals of the investigation, the major characteristics of the Cassini VIMS instrument, the instrument calibration, and operation, and the results of the recent Cassini flybys of Venus and the Earth–Moon system.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
305.
The Cassini-Huygens Cosmic Dust Analyzer (CDA) is intended to provide direct observations of dust grains with masses between 10−19 and 10−9 kg in interplanetary space and in the jovian and saturnian systems, to investigate their physical, chemical and dynamical properties as functions of the distances to the Sun, to Jupiter and to Saturn and its satellites and rings, to study their interaction with the saturnian rings, satellites and magnetosphere. Chemical composition of interplanetary meteoroids will be compared with asteroidal and cometary dust, as well as with Saturn dust, ejecta from rings and satellites. Ring and satellites phenomena which might be effects of meteoroid impacts will be compared with the interplanetary dust environment. Electrical charges of particulate matter in the magnetosphere and its consequences will be studied, e.g. the effects of the ambient plasma and the magnetic field on the trajectories of dust particles as well as fragmentation of particles due to electrostatic disruption.The investigation will be performed with an instrument that measures the mass, composition, electric charge, speed, and flight direction of individual dust particles. It is a highly reliable and versatile instrument with a mass sensitivity 106 times higher than that of the Pioneer 10 and 11 dust detectors which measured dust in the saturnian system. The Cosmic Dust Analyzer has significant inheritance from former space instrumentation developed for the VEGA, Giotto, Galileo, and Ulysses missions. It will reliably measure impacts from as low as 1 impact per month up to 104 impacts per second. The instrument weighs 17 kg and consumes 12 W, the integrated time-of-flight mass spectrometer has a mass resolution of up to 50. The nominal data transmission rate is 524 bits/s and varies between 50 and 4192 bps.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
306.
The Cassini Imaging Science Subsystem (ISS) is the highest-resolution two-dimensional imaging device on the Cassini Orbiter and has been designed for investigations of the bodies and phenomena found within the Saturnian planetary system. It consists of two framing cameras: a narrow angle, reflecting telescope with a 2-m focal length and a square field of view (FOV) 0.35 across, and a wide-angle refractor with a 0.2-m focal length and a FOV 3.5 across. At the heart of each camera is a charged coupled device (CCD) detector consisting of a 1024 square array of pixels, each 12 μ on a side. The data system allows many options for data collection, including choices for on-chip summing, rapid imaging and data compression. Each camera is outfitted with a large number of spectral filters which, taken together, span the electromagnetic spectrum from 200 to 1100 nm. These were chosen to address a multitude of Saturn-system scientific objectives: sounding the three-dimensional cloud structure and meteorology of the Saturn and Titan atmospheres, capturing lightning on both bodies, imaging the surfaces of Saturn’s many icy satellites, determining the structure of its enormous ring system, searching for previously undiscovered Saturnian moons (within and exterior to the rings), peering through the hazy Titan atmosphere to its yet-unexplored surface, and in general searching for temporal variability throughout the system on a variety of time scales. The ISS is also the optical navigation instrument for the Cassini mission. We describe here the capabilities and characteristics of the Cassini ISS, determined from both ground calibration data and in-flight data taken during cruise, and the Saturn-system investigations that will be conducted with it. At the time of writing, Cassini is approaching Saturn and the images returned to Earth thus far are both breathtaking and promising.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
307.
2001 Mars Odyssey Mission Summary   总被引:1,自引:0,他引:1  
Saunders  R.S.  Arvidson  R.E.  Badhwar  G.D.  Boynton  W.V.  Christensen  P.R.  Cucinotta  F.A.  Feldman  W.C.  Gibbs  R.G.  Kloss  C.  Landano  M.R.  Mase  R.A.  McSmith  G.W.  Meyer  M.A.  Mitrofanov  I.G.  Pace  G.D.  Plaut  J.J.  Sidney  W.P.  Spencer  D.A.  Thompson  T.W.  Zeitlin  C.J. 《Space Science Reviews》2004,110(1-2):1-36
The 2001 Mars Odyssey spacecraft, now in orbit at Mars, will observe the Martian surface at infrared and visible wavelengths to determine surface mineralogy and morphology, acquire global gamma ray and neutron observations for a full Martian year, and study the Mars radiation environment from orbit. The science objectives of this mission are to: (1) globally map the elemental composition of the surface, (2) determine the abundance of hydrogen in the shallow subsurface, (3) acquire high spatial and spectral resolution images of the surface mineralogy, (4) provide information on the morphology of the surface, and (5) characterize the Martian near-space radiation environment as related to radiation-induced risk to human explorers. To accomplish these objectives, the 2001 Mars Odyssey science payload includes a Gamma Ray Spectrometer (GRS), a multi-spectral Thermal Emission Imaging System (THEMIS), and a radiation detector, the Martian Radiation Environment Experiment (MARIE). THEMIS and MARIE are mounted on the spacecraft with THEMIS pointed at nadir. GRS is a suite of three instruments: a Gamma Subsystem (GSS), a Neutron Spectrometer (NS) and a High-Energy Neutron Detector (HEND). The HEND and NS instruments are mounted on the spacecraft body while the GSS is on a 6-m boom. Some science data were collected during the cruise and aerobraking phases of the mission before the prime mission started. THEMIS acquired infrared and visible images of the Earth-Moon system and of the southern hemisphere of Mars. MARIE monitored the radiation environment during cruise. The GRS collected calibration data during cruise and aerobraking. Early GRS observations in Mars orbit indicated a hydrogen-rich layer in the upper meter of the subsurface in the Southern Hemisphere. Also, atmospheric densities, scale heights, temperatures, and pressures were observed by spacecraft accelerometers during aerobraking as the spacecraft skimmed the upper portions of the Martian atmosphere. This provided the first in-situ evidence of winter polar warming in the Mars upper atmosphere. The prime mission for 2001 Mars Odyssey began in February 2002 and will continue until August 2004. During this prime mission, the 2001 Mars Odyssey spacecraft will also provide radio relays for the National Aeronautics and Space Administration (NASA) and European landers in early 2004. Science data from 2001 Mars Odyssey instruments will be provided to the science community via NASA’s Planetary Data System (PDS). The first PDS release of Odyssey data was in October 2002; subsequent releases occur every 3 months.  相似文献   
308.
Ergun  R.E.  Carlson  C.W.  Mozer  F.S.  Delory  G.T.  Temerin  M.  McFadden  J.P.  Pankow  D.  Abiad  R.  Harvey  P.  Wilkes  R.  Primbsch  H.  Elphic  R.  Strangeway  R.  Pfaff  R.  Cattell  C.A. 《Space Science Reviews》2001,98(1-2):67-91
We describe the electric field sensors and electric and magnetic field signal processing on the FAST (Fast Auroral SnapshoT) satellite. The FAST satellite was designed to make high time resolution observations of particles and electromagnetic fields in the auroral zone to study small-scale plasma interactions in the auroral acceleration region. The DC and AC electric fields are measured with three-axis dipole antennas with 56 m, 8 m, and 5 m baselines. A three-axis flux-gate magnetometer measures the DC magnetic field and a three-axis search coil measures the AC magnetic field. A central signal processing system receives all signals from the electric and magnetic field sensors. Spectral coverage is from DC to 4 MHz. There are several types of processed data. Survey data are continuous over the auroral zone and have full-orbit coverage for fluxgate magnetometer data. Burst data include a few minutes of a selected region of the auroral zone at the highest time resolution. A subset of the burst data, high speed burst memory data, are waveform data at 2×106 sample s–1. Electric field and magnetic field data are primarily waveforms and power spectral density as a function of frequency and time. There are also various types of focused data processing, including cross-spectral analysis, fine-frequency plasma wave tracking, high-frequency polarity measurement, and wave-particle correlations.  相似文献   
309.
von Steiger  R.  Zurbuchen  T.H.  Geiss  J.  Gloeckler  G.  Fisk  L.A.  Schwadron  N.A. 《Space Science Reviews》2001,97(1-4):123-127
The source region of solar wind plasma is observed to be directly reflected in the compositional pattern of both elemental and charge state compositions. Slow solar wind associated with streamers shows higher freeze-in temperatures and larger FIP enhancements than coronal hole associated wind. Also, the variability of virtually all compositional parameters is much higher for slow solar wind compared to coronal hole associated wind. We show that these compositional patterns persist even though stream-stream interactions complicate the identification based on in situ plasma parameters. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
310.
The discovery of terrestrial O+ and other heavy ions in magnetospheric hot plasmas, combined with the association of energetic ionospheric outflows with geomagnetic activity, led to the conclusion that increasing geomagnetic activity is responsible for filling the magnetosphere with ionospheric plasma. Recently it has been discovered that a major source of ionospheric heavy ion plasma outflow is responsive to the earliest impact of coronal mass ejecta upon the dayside ionosphere. Thus a large increase in ionospheric outflows begins promptly during the initial phase of geomagnetic storms, and is already present during the main phase development of such storms. We hypothesize that enhancement of the internal source of plasma actually supports the transition from substorm enhancements of aurora to storm-time ring current development in the inner magnetosphere. Other planets known to have ring current-like plasmas also have substantial internal sources of plasma, notably Jupiter and Saturn. One planet having a small magnetosphere, but very little internal source of plasma, is Mercury. Observations suggest that Mercury has substorms, but are ambiguous with regard to the possibility of magnetic storms of the planet. The Messenger mission to Mercury should provide an interesting test of our hypothesis. Mercury should support at most a modest ring current if its internal plasma source is as small as is currently believed. If substantiated, this hypothesis would support a general conclusion that the magnetospheric inflationary response is a characteristic of magnetospheres with substantial internal plasma sources. We quantitatively define this hypothesis and pose it as a problem in comparative magnetospheres.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号