首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   200篇
  免费   0篇
航空   136篇
航天技术   38篇
航天   26篇
  2023年   1篇
  2022年   1篇
  2021年   4篇
  2019年   4篇
  2018年   13篇
  2017年   6篇
  2016年   3篇
  2015年   7篇
  2014年   2篇
  2013年   9篇
  2012年   3篇
  2011年   4篇
  2010年   2篇
  2009年   12篇
  2008年   8篇
  2007年   14篇
  2006年   13篇
  2005年   6篇
  2004年   4篇
  2003年   2篇
  2002年   2篇
  2001年   6篇
  2000年   6篇
  1999年   1篇
  1998年   3篇
  1997年   3篇
  1996年   5篇
  1995年   4篇
  1994年   3篇
  1991年   3篇
  1990年   1篇
  1989年   3篇
  1985年   4篇
  1984年   9篇
  1983年   6篇
  1982年   8篇
  1981年   8篇
  1980年   1篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1970年   1篇
  1969年   1篇
  1967年   1篇
排序方式: 共有200条查询结果,搜索用时 156 毫秒
101.
The influence of stress states on cognition is widely recognized. However, the manner in which stress affects survey knowledge acquisition is still unresolved. For the present study, we investigated whether survey knowledge acquisition during a stressful task (i.e., under time pressure) is more accurate for the mental representation of global or local landmarks. Participants navigated through virtual cities with a navigation aid and explicit learning instructions for different landmark configurations. Participants’ judgments of relative direction (JRDs) suggest that global landmark configurations were not represented more accurately than local landmark configurations and that survey knowledge acquisition was not impaired under time pressure. In contrast to prior findings, our results indicate the limitations of the utility of global landmarks for spatial knowledge acquisition.  相似文献   
102.
The Interstellar Boundary Explorer (IBEX) is a small explorer mission that launched on 19 October 2008 with the sole, focused science objective to discover the global interaction between the solar wind and the interstellar medium. IBEX is designed to achieve this objective by answering four fundamental science questions: (1) What is the global strength and structure of the termination shock, (2) How are energetic protons accelerated at the termination shock, (3) What are the global properties of the solar wind flow beyond the termination shock and in the heliotail, and (4) How does the interstellar flow interact with the heliosphere beyond the heliopause? The answers to these questions rely on energy-resolved images of energetic neutral atoms (ENAs), which originate beyond the termination shock, in the inner heliosheath. To make these exploratory ENA observations IBEX carries two ultra-high sensitivity ENA cameras on a simple spinning spacecraft. IBEX’s very high apogee Earth orbit was achieved using a new and significantly enhanced method for launching small satellites; this orbit allows viewing of the outer heliosphere from beyond the Earth’s relatively bright magnetospheric ENA emissions. The combination of full-sky imaging and energy spectral measurements of ENAs over the range from ~10 eV to 6 keV provides the critical information to allow us to achieve our science objective and understand this global interaction for the first time. The IBEX mission was developed to provide the first global views of the Sun’s interstellar boundaries, unveiling the physics of the heliosphere’s interstellar interaction, providing a deeper understanding of the heliosphere and thereby astrospheres throughout the galaxy, and creating the opportunity to make even greater unanticipated discoveries.  相似文献   
103.
The Interstellar Boundary Explorer (IBEX) mission will provide maps of energetic neutral atoms (ENAs) originating from the boundary region of our heliosphere. On IBEX there are two sensors, IBEX-Lo and IBEX-Hi, covering the energy ranges from 10 to 2000 eV and from 300 to 6000 eV, respectively. The expected ENA signals at 1 AU are low, therefore both sensors feature large geometric factors. In addition, special attention has to be paid to the various sources of background that may interfere with our measurement. Because IBEX orbits the Earth, ion, electron, and ENA populations of the Earth’s magnetosphere are prime background sources. Another potential background source is the magnetosheath and the solar wind plasma when the spacecraft is outside the magnetosphere. UV light from the night sky and the geocorona have to be considered as background sources as well. Finally background sources within each of the sensors must be examined.  相似文献   
104.
By identifying peaks in the photoelectron spectrum produced by photoionization of CO2 in the Martian atmosphere, we have conducted a pilot study to determine the locations of these photoelectrons in the space around Mars. The significant result of this study is that these photoelectrons populate a region around Mars bounded externally by the magnetic pileup boundary, and internally by the lowest altitude of our measurements (∼250 km) on the dayside and by a cylinder of approximately the planetary radius on the nightside. It is particularly noteworthy that the photoelectrons on the nightside are observed from the terminator plane tailward to a distance of ∼3 R M, the Mars Express apoapsis. The presence of the atmospherically generated photoelectrons on the nightside of Mars may be explained by direct magnetic field line connection between the nightside observation locations and the Martian dayside ionosphere. Thus the characteristic photoelectron peaks may be used as tracers of magnetic field lines for the study of the magnetic field configuration and particle transport in the Martian environment.  相似文献   
105.
Möbius  E.  Kistler  L.M.  Popecki  M.A.  Crocker  K.N.  Granoff  M.  Turco  S.  Anderson  A.  Demain  P.  Distelbrink  J.  Dors  I.  Dunphy  P.  Ellis  S.  Gaidos  J.  Googins  J.  Hayes  R.  Humphrey  G.  Kästle  H.  Lavasseur  J.  Lund  E.J.  Miller  R.  Sartori  E.  Shappirio  M.  Taylor  S.  Vachon  P.  Vosbury  M.  Ye  V.  Hovestadt  D.  Klecker  B.  Arbinger  H.  Künneth  E.  Pfeffermann  E.  Seidenschwang  E.  Gliem  F.  Reiche  K.-U.  Stöckner  K.  Wiewesiek  W.  Harasim  A.  Schimpfle  J.  Battell  S.  Cravens  J.  Murphy  G. 《Space Science Reviews》1998,86(1-4):449-495
The Solar Energetic Particle Ionic Charge Analyzer (SEPICA) is the main instrument on the Advanced Composition Explorer (ACE) to determine the ionic charge states of solar and interplanetary energetic particles in the energy range from ≈0.2 MeV nucl−1 to ≈5 MeV charge−1. The charge state of energetic ions contains key information to unravel source temperatures, acceleration, fractionation and transport processes for these particle populations. SEPICA will have the ability to resolve individual charge states and have a substantially larger geometric factor than its predecessor ULEZEQ on ISEE-1 and -3, on which SEPICA is based. To achieve these two requirements at the same time, SEPICA is composed of one high-charge resolution sensor section and two low- charge resolution, but large geometric factor sections. The charge resolution is achieved by the focusing of the incoming ions, through a multi-slit mechanical collimator, deflection in an electrostatic analyzer with a voltage up to 30 kV, and measurement of the impact position in the detector system. To determine the nuclear charge (element) and energy of the incoming ions, the combination of thin-window flow-through proportional counters with isobutane as counter gas and ion-implanted solid state detectors provide for 3 independent ΔE (energy loss) versus E (residual energy) telescopes. The multi-wire proportional counter simultaneously determines the energy loss ΔE and the impact position of the ions. Suppression of background from penetrating cosmic radiation is provided by an anti-coincidence system with a CsI scintillator and Si-photodiodes. The data are compressed and formatted in a data processing unit (S3DPU) that also handles the commanding and various automatted functions of the instrument. The S3DPU is shared with the Solar Wind Ion Charge Spectrometer (SWICS) and the Solar Wind Ion Mass Spectrometer (SWIMS) and thus provides the same services for three of the ACE instruments. It has evolved out of a long family of data processing units for particle spectrometers. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
106.
The Solar Electron and Proton Telescope for the STEREO Mission   总被引:1,自引:0,他引:1  
The Solar Electron and Proton Telescope (SEPT), one of four instruments of the Solar Energetic Particle (SEP) suite for the IMPACT investigation, is designed to provide the three-dimensional distribution of energetic electrons and protons with good energy and time resolution. This knowledge is essential for characterizing the dynamic behaviour of CME associated and solar flare associated events. SEPT consists of two dual double-ended magnet/foil particle telescopes which cleanly separate and measure electrons in the energy range from 30–400 keV and protons from 60–7?000 keV. Anisotropy information on a non-spinning spacecraft is provided by the two separate telescopes: SEPT-E looking in the ecliptic plane along the Parker spiral magnetic field both towards and away from the Sun, and SEPT-NS looking vertical to the ecliptic plane towards North and South. The dual set-up refers to two adjacent sensor apertures for each of the four view directions: one for protons, one for electrons. The double-ended set-up refers to the detector stack with view cones in two opposite directions: one side (electron side) is covered by a thin foil, the other side (proton side) is surrounded by a magnet. The thin foil leaves the electron spectrum essentially unchanged but stops low energy protons. The magnet sweeps away electrons but lets ions pass. The total geometry factor for electrons and protons is 0.52 cm2?sr and 0.68 cm2?sr, respectively. This paper describes the design and calibration of SEPT as well as the scientific objectives that the instrument will address.  相似文献   
107.
The Rosetta dual Langmuir probe instrument, LAP, utilizes the multiple powers of a pair of spherical Langmuir probes for measurements of basic plasma parameters with the aim of providing detailed knowledge of the outgassing, ionization, and subsequent plasma processes around the Rosetta target comet. The fundamental plasma properties to be studied are the plasma density, the electron temperature, and the plasma flow velocity. However, study of electric fields up to 8 kHz, plasma density fluctuations, spacecraft potential, integrated UV flux, and dust impacts is also possible. LAP is fully integrated in the Rosetta Plasma Consortium (RPC), the instruments of which together provide a comprehensive characterization of the cometary plasma. The LAP Team is listed in Table III.  相似文献   
108.
We review the radiometric ages of the 16 currently known Martian meteorites, classified as 11 shergottites (8 basaltic and 3 lherzolitic), 3 nakhlites (clinopyroxenites), Chassigny (a dunite), and the orthopyroxenite ALH84001. The basaltic shergottites represent surface lava flows, the others magmas that solidified at depth. Shock effects correlate with these compositional types, and, in each case, they can be attributed to a single shock event, most likely the meteorite's ejection from Mars. Peak pressures in the range 15 – 45 GPa appear to be a "launch window": shergottites experienced ~30 – 45 GPa, nakhlites ~20 ± 5 GPa, Chassigny ~35 GPa, and ALH84001 ~35 – 40 GPa. Two meteorites, lherzolitic shergottite Y-793605 and orthopyroxenite ALH84001, are monomict breccias, indicating a two-phase shock history in toto: monomict brecciation at depth in a first impact and later shock metamorphism in a second impact, probably the ejection event. Crystallization ages of shergottites show only two pronounced groups designated S1 (~175 Myr), including 4 of 6 dated basalts and all 3 lherzolites, and S2 (330 – 475 Myr), including two basaltic shergottites and probably a third according to preliminary data. Ejection ages of shergottites, defined as the sum of their cosmic ray exposure ages and their terrestrial residence ages, range from the oldest (~20 Myr) to the youngest (~0.7 Myr) values for Martian meteorites. Five groups are distinguished and designated SDho (one basalt, ~20 Myr), SL (two lherzolites of overlapping ejection ages, 3.94 ± 0.40 Myr and 4.70 ± 0.50 Myr), S (four basalts and one lherzolite, ~2.7 – 3.1 Myr), SDaG (two basalts, ~1.25 Myr), and SE (the youngest basalt, 0.73 ± 0.15 Myr). Consequently, crystallization age group S1 includes ejection age groups SL, SE and 4 of the 5 members of S, whereas S2 includes the remaining member of S and one of the two members of SDaG. Shock effects are different for basalts and lherzolites in group S/S1. Similarities to the dated meteorite DaG476 suggest that the two shergottites that are not dated yet belong to group S2. Whether or not S2 is a single group is unclear at present. If crystallization age group S1 represents a single ejection event, pre-exposure on the Martian surface is required to account for ejection ages of SL that are greater than ejection ages of S, whereas secondary breakup in space is required to account for ejection ages of SE less than those of S. Because one member of crystallization age group S2 belongs to ejection group S, the maximum number of shergottite ejection events is 6, whereas the minimum number is 2. Crystallization ages of nakhlites and Chassigny are concordant at ~1.3 Gyr. These meteorites also have concordant ejection ages, i.e., they were ejected together in a single event (NC). Shock effects vary within group NC between the nakhlites and Chassigny. The orthopyroxenite ALH84001 is characterized by the oldest crystallization age of ~4.5 Gyr. Its secondary carbonates are ~3.9 Gyr old, an age corresponding to the time of Ar-outgassing from silicates. Carbonate formation appears to have coincided with impact metamorphism, either directly, or indirectly, perhaps via precipitation from a transient impact crater lake. The crystallization age and the ejection age of ALH84001, the second oldest ejection age at 15.0 ± 0.8 Myr, give evidence for another ejection event (O). Consequently, the total number of ejection events for the 16 Martian meteorites lies in the range 4 – 8. The Martian meteorites indicate that Martian magmatism has been active over most of Martian geologic history, in agreement with the inferred very young ages of flood basalt flows observed in Elysium and Amazonis Planitia with the Mars Orbital Camera (MOC) on the Mars Global Surveyor (MGS). The provenance of the youngest meteorites must be found among the youngest volcanic surfaces on Mars, i.e., in the Tharsis, Amazonis, and Elysium regions.  相似文献   
109.
110.
Space Science Reviews - This paper reviews habitability conditions for a terrestrial planet from the point of view of geosciences. It addresses how interactions between the interior of a planet or...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号