首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   89篇
  免费   0篇
  国内免费   1篇
航空   46篇
航天技术   11篇
航天   33篇
  2022年   1篇
  2021年   1篇
  2019年   2篇
  2018年   3篇
  2017年   2篇
  2015年   4篇
  2014年   3篇
  2013年   9篇
  2012年   2篇
  2011年   6篇
  2010年   6篇
  2009年   3篇
  2008年   2篇
  2007年   8篇
  2006年   5篇
  2005年   3篇
  2004年   3篇
  2003年   6篇
  2002年   3篇
  2001年   2篇
  2000年   2篇
  1999年   3篇
  1997年   2篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1987年   1篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
排序方式: 共有90条查询结果,搜索用时 140 毫秒
41.
It is now well established that both thunderclouds and lightning routinely emit x-rays and gamma-rays. These emissions appear over wide timescales, ranging from sub-microsecond bursts of x-rays associated with lightning leaders, to sub-millisecond bursts of gamma-rays seen in space called terrestrial gamma-ray flashes, to minute long glows from thunderclouds seen on the ground and in or near the cloud by aircraft and balloons. In particular, terrestrial gamma-ray flashes (TGFs), which are thought to be emitted by thunderclouds, are so bright that they sometimes saturate detectors on spacecraft hundreds of kilometers away. These TGFs also generate energetic secondary electrons and positrons that are detected by spacecraft in the inner magnetosphere. It is generally believed that these x-ray and gamma-ray emissions are generated, via bremsstrahlung, by energetic runaway electrons that are accelerated by electric fields in the atmosphere. In this paper, we review this newly emerging field of High-Energy Atmospheric Physics, including the production of runaway electrons, the production and propagation of energetic radiation, and the effects of both on atmospheric electrodynamics.  相似文献   
42.
I discuss a method for determining the strength and spatial structure of the coronal magnetic field by observations of the Faraday rotation of a radio galaxy which is in conjunction with the Sun. Given a knowledge of the plasma density in the outer corona, and the magnetic field sector structure (both independently available), the strength of the coronal field can be determined, as well as the magnitude of spatial variations on scales of 1000 km to several solar radii. Such knowledge is crucial for testing computational models of the solar corona, which are prominently featured in this meeting. Results are presented from observations with the Very Large Array radio telescope of the radio galaxy 3C228 on August 16, 2003, when the line of sight to the source was at heliocentic distances of 7.1−6.2R . The observations are consistent with a coronal magnetic field which is proportional to the inverse square of the distance in the range 6 ≤ r ≤ 10R , and has a value of 39 mG at 6.2R . The Faraday rotation is uniform across the source, indicating an absence of strong plasma inhomogeneity on spatial scales up to 35,000 km.  相似文献   
43.
精密齿轮的成形磨削与拓扑修形   总被引:2,自引:0,他引:2  
150年前,John Holroyd在曼彻斯特创立了自己的工程公司,培养了一批在工业革命时期很有声望的人,例如Joseph Whitworth,他使螺纹标准化并研制出精密测量仪器.今天我们已经研发出一个用于斜齿轮精密齿形磨削的系统.该系统利用机床在线齿形测量,将补偿信息反馈至砂轮修整系统.机床可通过高精度的内置"智能"自动调整,从而减少操作者的人工介入.该系统精度高,过程控制自动化且加工成本低.  相似文献   
44.
45.
Models of plasma flow in a coronal hole fall naturally into four classes. These are: (i) radial flow on a streamline along which the divergence is assumed to vary differently than as the square of the radial distance from the Sun; (ii) global flow along streamlines determined in some independent manner; (iii) empirical models originating in, or based strongly on observation; (iv) dynamic models using magnetic and plasma boundary conditions low in the corona to find both the geometry of streamlines and the flow field.To date, models both of ideal coronal holes and of specific observed coronal holes indicate that flow velocities above 100 km s+1, and temperatures of perhaps 2 × 106K are possible at 2R heliocentric distance, where densities of 2 × 105 cm+3 have been reported. These velocities are at, or just above the sound speed, although still sub-Alfvénic. There is also general agreement among models of large polar holes that conversion of mechanical wave energy flux into solar wind kinetic energy is occurring in the 2R to 5R range, perhaps occurs even further outwards, and that the magnitude and extent of this energy deposition depends on the size and on the geometrical divergence of the hole.However, each model exhibits distinct weaknesses counteracted only by the complimentary nature of the various types of models. Models in class (i) are simply not global representations, but are tractable when dealing with complex forms of the energy equation or with several ion species. Class (ii) models lack any geometrical information beyond the ad hoc assumption of known streamline geometry, but have the same advantages as those in class (i). Class (iii) models cannot determine streamline geometry within a hole and do not extend further from the Sun than the available data — although they place important constraints on models in the other classes. Class (iv) models are limited to simple forms of the energy equation and/or to quasi-radial flow, but are the only models producing self-consistent streamline geometries through inclusion of transverse magnetic stresses in the momentum equation.Most limitations in coronal hole flow models can be eliminated by using known numerical techniques to combine models in classes (i), (ii), and (iv). This would allow detailed models of coronal holes and corresponding interplanetary conditions to be developed for specific time periods, at the cost of flexibility and possibly also general conceptual understanding. Nevertheless, the concept of a coronal hole is now reasonably well established, and acceptable modelling approaches are rapidly filling the literature. It can be anticipated that the evolution of these models, together with present and future observations, will bring us much nearer to understanding coronal energetics and dynamics.Proceedings of the Symposium on Solar Terrestrial Physics held in Innsbruck, May–June 1978.  相似文献   
46.
Photosynthetic microbial mat communities were obtained from marine hypersaline saltern ponds, maintained in a greenhouse facility, and examined for the effects of salinity variations. Because these microbial mats are considered to be useful analogs of ancient marine communities, they offer insights about evolutionary events during the >3 billion year time interval wherein mats co-evolved with Earth's lithosphere and atmosphere. Although photosynthetic mats can be highly dynamic and exhibit extremely high activity, the mats in the present study have been maintained for >1 year with relatively minor changes. The major groups of microorganisms, as assayed using microscopic, genetic, and biomarker methodologies, are essentially the same as those in the original field samples. Field and greenhouse mats were similar with respect to rates of exchange of oxygen and dissolved inorganic carbon across the mat-water interface, both during the day and at night. Field and greenhouse mats exhibited similar rates of efflux of methane and hydrogen. Manipulations of salinity in the water overlying the mats produced changes in the community that strongly resemble those observed in the field. A collaboratory testbed and an array of automated features are being developed to support remote scientific experimentation with the assistance of intelligent software agents. This facility will permit teams of investigators the opportunity to explore ancient environmental conditions that are rare or absent today but that might have influenced the early evolution of these photosynthetic ecosystems.  相似文献   
47.
Steven J. Dick   《Space Policy》2007,23(1):29-32
There have been surprisingly few studies of the societal impact of space exploration, yet the impact has been considerable, and wide ranging. After briefly reviewing what has been published, the author reports on activities by NASA to improve our understanding of this issue. In accordance with the National Aeronautics and Space Act of 1958, the NASA History Division has initiated a series of special studies and conferences on the societal impact of spaceflight. The first conference, held 19–21 September 2006 in Washington, DC and co-sponsored by the National Air and Space Museum, included some 35 speakers who addressed six main categories, spanning international, commercial, cultural, environmental and national security impacts. For both the conferences and the special studies, the goal is to examine the multifaceted impacts of spaceflight with rigorous historical research.  相似文献   
48.
The characterisation of the aeroshape selected for the X-38 [Crew Return Vehicle (CRV) demonstrator] is presently being performed as a co-operative endeavour between NASA, DLR (through its TETRA Program), and the European Space Agency (ESA) with Dassault Aviation integrating the aerodynamic and aerothermodynamic activities. The methodologies selected for characterizing the aerodynamic and aerothermodynamic environment of the X-38 are presented.  相似文献   
49.
How does gesturing during route learning relate to subsequent spatial performance? We examined the relationship between gestures produced spontaneously while studying route directions and spatial representations of the navigated environment. Participants studied route directions, then navigated those routes from memory in a virtual environment, and finally had their memory of the environment assessed. We found that, for navigators with low spatial perspective-taking performance on the Spatial Orientation Test, more gesturing from a survey perspective predicted more accurate memory following navigation. Thus, co-thought gestures accompanying route learning relate to performance selectively, depending on the gesturers’ spatial ability and the perspective of their gestures. Survey gestures may help some individuals visualize an overall route that they can retain in memory.  相似文献   
50.
Current geophysical knowledge of the planet Mercury is based upon observations from ground-based astronomy and flybys of the Mariner 10 spacecraft, along with theoretical and computational studies. Mercury has the highest uncompressed density of the terrestrial planets and by implication has a metallic core with a radius approximately 75% of the planetary radius. Mercury’s spin rate is stably locked at 1.5 times the orbital mean motion. Capture into this state is the natural result of tidal evolution if this is the only dissipative process affecting the spin, but the capture probability is enhanced if Mercury’s core were molten at the time of capture. The discovery of Mercury’s magnetic field by Mariner 10 suggests the possibility that the core is partially molten to the present, a result that is surprising given the planet’s size and a surface crater density indicative of early cessation of significant volcanic activity. A present-day liquid outer core within Mercury would require either a core sulfur content of at least several weight percent or an unusual history of heat loss from the planet’s core and silicate fraction. A crustal remanent contribution to Mercury’s observed magnetic field cannot be ruled out on the basis of current knowledge. Measurements from the MESSENGER orbiter, in combination with continued ground-based observations, hold the promise of setting on a firmer basis our understanding of the structure and evolution of Mercury’s interior and the relationship of that evolution to the planet’s geological history.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号