首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   86篇
  免费   0篇
  国内免费   1篇
航空   44篇
航天技术   11篇
航天   32篇
  2022年   1篇
  2021年   1篇
  2019年   2篇
  2018年   3篇
  2017年   2篇
  2015年   4篇
  2014年   3篇
  2013年   9篇
  2012年   2篇
  2011年   6篇
  2010年   6篇
  2009年   3篇
  2008年   2篇
  2007年   8篇
  2006年   5篇
  2005年   3篇
  2004年   2篇
  2003年   6篇
  2002年   3篇
  2001年   2篇
  2000年   2篇
  1999年   3篇
  1997年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
排序方式: 共有87条查询结果,搜索用时 250 毫秒
51.
The origins of the hot solar corona and the supersonically expanding solar wind are still the subject of much debate. This paper summarizes some of the essential ingredients of realistic and self-consistent models of solar wind acceleration. It also outlines the major issues in the recent debate over what physical processes dominate the mass, momentum, and energy balance in the accelerating wind. A key obstacle in the way of producing realistic simulations of the Sun-heliosphere system is the lack of a physically motivated way of specifying the coronal heating rate. Recent models that assume the energy comes from Alfvén waves that are partially reflected, and then dissipated by magnetohydrodynamic turbulence, have been found to reproduce many of the observed features of the solar wind. This paper discusses results from these models, including detailed comparisons with measured plasma properties as a function of solar wind speed. Some suggestions are also given for future work that could answer the many remaining questions about coronal heating and solar wind acceleration.  相似文献   
52.
53.
Logistical constraints during long-duration space expeditions will limit the ability of Earth-based mission control personnel to manage their astronaut crews and will thus increase the prevalence of autonomous operations. Despite this inevitability, little research exists regarding crew performance and psychosocial adaptation under such autonomous conditions. To this end, a newly-initiated study on crew management systems was conducted to assess crew performance effectiveness under rigid schedule-based management of crew activities by Mission Control versus more flexible, autonomous management of activities by the crews themselves. Nine volunteers formed three long-term crews and were extensively trained in a simulated planetary geological exploration task over the course of several months. Each crew then embarked on two separate 3–4 h missions in a counterbalanced sequence: Scheduled, in which the crews were directed by Mission Control according to a strict topographic and temporal region-searching sequence, and Autonomous, in which the well-trained crews received equivalent baseline support from Mission Control but were free to explore the planetary surface as they saw fit. Under the autonomous missions, performance in all three crews improved (more high-valued geologic samples were retrieved), subjective self-reports of negative emotional states decreased, unstructured debriefing logs contained fewer references to negative emotions and greater use of socially-referent language, and salivary cortisol output across the missions was attenuated. The present study provides evidence that crew autonomy may improve performance and help sustain if not enhance psychosocial adaptation and biobehavioral health. These controlled experimental data contribute to an emerging empirical database on crew autonomy which the international astronautics community may build upon for future research and ultimately draw upon when designing and managing missions.  相似文献   
54.
Microbial life in a liquid asphalt desert   总被引:1,自引:0,他引:1  
Pitch Lake in Trinidad and Tobago is a natural asphalt reservoir nourished by pitch seepage, a form of petroleum that consists of mostly asphaltines, from the surrounding oil-rich region. During upward seepage, pitch mixes with mud and gases under high pressure, and the lighter portion evaporates or is volatilized, which produces a liquid asphalt residue characterized by low water activity, recalcitrant carbon substrates, and noxious chemical compounds. An active microbial community of archaea and bacteria, many of them novel strains (particularly from the new Tar ARC groups), totaling a biomass of up to 10(7) cells per gram, was found to inhabit the liquid hydrocarbon matrix of Pitch Lake. Geochemical and molecular taxonomic approaches revealed diverse, novel, and deeply branching microbial lineages with the potential to mediate anaerobic hydrocarbon degradation processes in different parts of the asphalt column. In addition, we found markers for archaeal methane metabolism and specific gene sequences affiliated with facultative and obligate anaerobic sulfur- and nitrite-oxidizing bacteria. The microbial diversity at Pitch Lake was found to be unique when compared to microbial communities analyzed at other hydrocarbon-rich environments, which included Rancho Le Brea, a natural asphalt environment in California, USA, and an oil well and a mud volcano in Trinidad and Tobago, among other sites. These results open a window into the microbial ecology and biogeochemistry of recalcitrant hydrocarbon matrices and establish the site as a terrestrial analogue for modeling the biotic potential of hydrocarbon lakes such as those found on Saturn's largest moon Titan.  相似文献   
55.
Shocks are found throughout the heliosphere, wherever supersonic (or super-magnetosonic) flows encounter obstacles or other, slowly moving, media. Although some of the physical parameters are in different regimes, all shocks heat and decelerate the media incident upon them. Most shocks must propagate in a collisionless plasma, thereby adding importance to the particle interactions with the electromagnetic fields, and enabling some particles to be accelerated to high energies. This paper explores the commonalities, and differences, in shocks throughout the heliosphere, and concentrates on the role of shock microstructure in effecting the shock transition and in governing the resulting energy partition amongst the constituent species. Shocks play a significant role in the solar-terrestrial chain.  相似文献   
56.
The New Horizons Spacecraft   总被引:1,自引:0,他引:1  
The New Horizons spacecraft was launched on 19 January 2006. The spacecraft was designed to provide a platform for seven instruments designated by the science team to collect and return data from Pluto in 2015. The design meets the requirements established by the National Aeronautics and Space Administration (NASA) Announcement of Opportunity AO-OSS-01. The design drew on heritage from previous missions developed at The Johns Hopkins University Applied Physics Laboratory (APL) and other missions such as Ulysses. The trajectory design imposed constraints on mass and structural strength to meet the high launch acceleration consistent with meeting the AO requirement of returning data prior to the year 2020. The spacecraft subsystems were designed to meet tight resource allocations (mass and power) yet provide the necessary control and data handling finesse to support data collection and return when the one-way light time during the Pluto fly-by is 4.5 hours. Missions to the outer regions of the solar system (where the solar irradiance is 1/1000 of the level near the Earth) require a radioisotope thermoelectric generator (RTG) to supply electrical power. One RTG was available for use by New Horizons. To accommodate this constraint, the spacecraft electronics were designed to operate on approximately 200 W. The travel time to Pluto put additional demands on system reliability. Only after a flight time of approximately 10 years would the desired data be collected and returned to Earth. This represents the longest flight duration prior to the return of primary science data for any mission by NASA. The spacecraft system architecture provides sufficient redundancy to meet this requirement with a probability of mission success of greater than 0.85. The spacecraft is now on its way to Pluto, with an arrival date of 14 July 2015. Initial in-flight tests have verified that the spacecraft will meet the design requirements.  相似文献   
57.
Recent developments in NASA’s deterministic High charge (Z) and Energy TRaNsport (HZETRN) code have included lateral broadening of primary ion beams due to small-angle multiple Coulomb scattering, and coupling of the ion-nuclear scattering interactions with energy loss and straggling. This new version of HZETRN is based on Green function methods, called GRNTRN, and is suitable for modeling transport with both space environment and laboratory boundary conditions. Multiple scattering processes are a necessary extension to GRNTRN in order to accurately model ion beam experiments, to simulate the physical and biological-effective radiation dose, and to develop new methods and strategies for light-ion radiation therapy. In this paper we compare GRNTRN simulations of proton lateral broadening distributions with beam measurements taken at Loma Linda University Proton Therapy Facility. The simulated and measured lateral broadening distributions are compared for a 250 MeV proton beam on aluminum, polyethylene, polystyrene, bone substitute, iron, and lead target materials. The GRNTRN results are also compared to simulations from the Monte Carlo MCNPX code for the same projectile-target combinations described above.  相似文献   
58.
59.
We discuss the degree to which radio propagation measurements diagnose conditions in the ionized gas of the interstellar medium (ISM). The “signal generators” of the radio waves of interest are extragalactic radio sources (quasars and radio galaxies), as well as Galactic sources, primarily pulsars. The polarized synchrotron radiation of the Galactic non-thermal radiation also serves to probe the ISM, including space between the emitting regions and the solar system. Radio propagation measurements provide unique information on turbulence in the ISM as well as the mean plasma properties such as density and magnetic field strength. Radio propagation observations can provide input to the major contemporary questions on the nature of ISM turbulence, such as its dissipation mechanisms and the processes responsible for generating the turbulence on large spatial scales. Measurements of the large scale Galactic magnetic field via Faraday rotation provide unique observational input to theories of the generation of the Galactic field.  相似文献   
60.
Current measurements from DIARAD/VIRGO, PMO6V/VIRGO and ACRIM3 radiometers are of the same order of magnitude, but differ from TIM/SORCE by about 4.5 W m−2. This difference is higher than the sum of the claimed individual absolute uncertainties of the instruments. In this context, the SOLAR payload on the International Space Station embarks the SOVIM package. We give the results of the differential absolute radiometer DIARAD/SOVIM and discuss its associated uncertainties. Compared to DIARAD/VIRGO, all possible efforts have been made to improve the absolute accuracy. Substantial progress has been made in the aperture area and electrical power measurements. The measured TSI value from the left channel of DIARAD/SOVIM during three days of June 2008 is 1364.50 ± 1.38 W m−2 (Total) or ±0.49 W m−2 (if we combine the individual contributions in quadrature). The right channel gives 1364.75 W m−2 with the same uncertainties. These values are about 1.2 W m−2 lower than DIARAD/VIRGO and about 4 W m−2 higher than TIM/SORCE. The difference between the left and right channels measurements is as low as 0.25 W m−2 which is within the improved uncertainty limits.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号