首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   0篇
航空   10篇
航天技术   5篇
航天   3篇
  2021年   1篇
  2018年   1篇
  2014年   1篇
  2013年   1篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2007年   1篇
  2004年   2篇
  2000年   2篇
  1998年   2篇
  1990年   1篇
  1985年   1篇
  1982年   1篇
排序方式: 共有18条查询结果,搜索用时 15 毫秒
11.
Remote sensing measurements of the meridional thermospheric neutral wind using the Fabry-Perot Interferometer on Dynamics Explorer have been combined within-situ measurements of the zonal component using the Wind and Temperature Spectrometer on the same spacecraft. The two data sets with appropriate spatial phasing and averaging determine the vector wind along the track of the polar orbiting spacecraft. A study of fifty-eight passes over the Southern (sunlit) pole has enabled the average Universal Time dependence of the wind field to be determined for essentially a single solar local time cut. The results show the presence of a “back-ground” wind field driven by solar EUV heating upon which is superposed a circulating wind field driven by high latitude momentum and energy sources.  相似文献   
12.
The New Horizons instrument named Ralph is a visible/near infrared multi-spectral imager and a short wavelength infrared spectral imager. It is one of the core instruments on New Horizons, NASA’s first mission to the Pluto/Charon system and the Kuiper Belt. Ralph combines panchromatic and color imaging capabilities with SWIR imaging spectroscopy. Its primary purpose is to map the surface geology and composition of these objects, but it will also be used for atmospheric studies and to map the surface temperature. It is a compact, low-mass (10.5 kg) power efficient (7.1 W peak), and robust instrument with good sensitivity and excellent imaging characteristics. Other than a door opened once in flight, it has no moving parts. These characteristics and its high degree of redundancy make Ralph ideally suited to this long-duration flyby reconnaissance mission.  相似文献   
13.
14.
In this paper, we have improved the capabilities of a low dimensional nonlinear dynamical model called WINDMI to determine the state of the global magnetosphere by employing the magnetotail (MT) index as a measurement constraint during large geomagnetic storms. The MT index is derived from particle precipitation measurements made by the NOAA/POES satellites. This index indicates the location of the nightside ion isotropic boundary, which is then used as a proxy for the strength of the magnetotail current in the magnetosphere. In Asikainen et al. (2010), the contribution of the tail current to the Dst index is estimated from an empirical relationship based on the MT index. Here the WINDMI model is used as a substitute to arrive at the tail current and ring current contribution to the Dst index, for comparison purposes. We run the WINDMI model on 7 large geomagnetic storms, while optimizing the model state variables against the Dst index, the MT index, and the AL index simultaneously. Our results show that the contribution from the geotail current produced by the WINDMI model and the MT index are strongly correlated, except during some periods when storm time substorms are observed. The inclusion of the MT index as an optimization constraint in turn increases our confidence that the ring current contribution to the Dst index calculated by the WINDMI model is correct during large geomagnetic storms.  相似文献   
15.
The Composite Infrared Spectrometer (CIRS) is a remote-sensing Fourier Transform Spectrometer (FTS) on the Cassini orbiter that measures thermal radiation over two decades in wavenumber, from 10 to 1400 cm− 1 (1 mm to 7μ m), with a spectral resolution that can be set from 0.5 to 15.5 cm− 1. The far infrared portion of the spectrum (10–600 cm− 1) is measured with a polarizing interferometer having thermopile detectors with a common 4-mrad field of view (FOV). The middle infrared portion is measured with a traditional Michelson interferometer having two focal planes (600–1100 cm− 1, 1100–1400 cm− 1). Each focal plane is composed of a 1× 10 array of HgCdTe detectors, each detector having a 0.3-mrad FOV. CIRS observations will provide three-dimensional maps of temperature, gas composition, and aerosols/condensates of the atmospheres of Titan and Saturn with good vertical and horizontal resolution, from deep in their tropospheres to high in their mesospheres. CIRS’s ability to observe atmospheres in the limb-viewing mode (in addition to nadir) offers the opportunity to provide accurate and highly resolved vertical profiles of these atmospheric variables. The ability to observe with high-spectral resolution should facilitate the identification of new constituents. CIRS will also map the thermal and compositional properties of the surfaces of Saturn’s icy satellites. It will similarly map Saturn’s rings, characterizing their dynamical and spatial structure and constraining theories of their formation and evolution. The combination of broad spectral range, programmable spectral resolution, the small detector fields of view, and an orbiting spacecraft platform will allow CIRS to observe the Saturnian system in the thermal infrared at a level of detail not previously achieved.This revised version was published online in July 2005 with a corrected cover date.  相似文献   
16.
Gravity waves are prominent in the polar region of the terrestiral thermosphere, and can be excited by perturbations in Joule heating and Lorents force due to magnetospheric processes. We show observations from the Dynamics Explorer-2 satellite to illustrate the complexity of the phenomenon and review the transfer function model (TFM) which has guided our interpretation. On a statistical basis, the observed atmospheric perturbations decrease from the poles toward the equator and tend to correlate with the magnetic activity index, Ap, although individual measurements indicate that the magnetic index is often a poor measure of gravity wave excitation. The theoretical models devised to describe gravity waves are multifaceted. On one end are fully analytical, linear models which are based on the work of Hines. On the other end are fully numerical, thermospheric general circulation models (TGCMs) which incorporate non-linear processes and wave mean flow interactions. The transfer function model (TFM) discussed in this paper is between these two approaches. It is less restrictive than the analytical approach and relates the global propagation of gravity waves to their excitation. Compared with TGCMs, the TFM is simplified by its linear approximation; but it is not limited in spatial and temporal resolution, and the TFM describes the wave propagation through the lower atmosphere. Moreover, the TFM is semianalytical which helps in delineating the wave components. Using expansions in terms of spherical harmonics and Fourier components, the transfer function is obtained from numerical height integration. This is time consuming computationally but needs to be done only once. Once such a transfer function is computed, the wave response to arbitrary source distributions on the globe can then be constructed in very short order. In this review, we discuss some numerical experiments performed with the TFM, to study the various wave components excited in the auroral regions which propagate through the thermosphere and lower atmosphere, and to elucidate the properties of realistic source geometries. The model is applied to the interpretation of satellite measurements. Gravity waves observed in the thermosphere of Venus are also discussed.  相似文献   
17.
The Galileo Probe entered the atmosphere of Jupiter on December 7, 1995. Measurements of the chemical and isotopic composition of the Jovian atmosphere were obtained by the mass spectrometer during the descent over the 0.5 to 21 bar pressure region over a time period of approximately 1 hour. The sampling was either of atmospheric gases directly introduced into the ion source of the mass spectrometer through capillary leaks or of gas, which had been chemically processed to enhance the sensitivity of the measurement to trace species or noble gases. The analysis of this data set continues to be refined based on supporting laboratory studies on an engineering unit. The mixing ratios of the major constituents of the atmosphere hydrogen and helium have been determined as well as mixing ratios or upper limits for several less abundant species including: methane, water, ammonia, ethane, ethylene, propane, hydrogen sulfide, neon, argon, krypton, and xenon. Analysis also suggests the presence of trace levels of other 3 and 4 carbon hydrocarbons, or carbon and nitrogen containing species, phosphine, hydrogen chloride, and of benzene. The data set also allows upper limits to be set for many species of interest which were not detected. Isotope ratios were measured for 3He/4He, D/H, 13C/12C, 20Ne/22Ne, 38Ar/36Ar and for isotopes of both Kr and Xe.  相似文献   
18.
This paper considers the use of spatio-temporal adaptive array processing in over-the-horizon radar (OTHR) and airborne radar applications in order to remove nonstationary multipath interference, known as “hot clutter”. Since the spatio-temporal properties of hot clutter cannot be assumed constant over the coherent processing interval (CPI), conventional adaptive techniques fail to provide effective hot-clutter mitigation without simultaneously degrading the properties of the backscattered radar signals, known as “cold clutter”. The approach presented incorporates multiple “stochastic” (data-dependent) constraints to achieve effective hot-clutter suppression, while maintaining distortionless output cold-clutter post-processing stationarity  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号