首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17103篇
  免费   28篇
  国内免费   123篇
航空   9723篇
航天技术   4900篇
综合类   235篇
航天   2396篇
  2021年   154篇
  2018年   165篇
  2016年   149篇
  2014年   432篇
  2013年   513篇
  2012年   398篇
  2011年   547篇
  2010年   385篇
  2009年   742篇
  2008年   772篇
  2007年   341篇
  2006年   415篇
  2005年   346篇
  2004年   396篇
  2003年   462篇
  2002年   451篇
  2001年   507篇
  2000年   337篇
  1999年   434篇
  1998年   375篇
  1997年   294篇
  1996年   331篇
  1995年   406篇
  1994年   351篇
  1993年   349篇
  1992年   264篇
  1991年   246篇
  1990年   231篇
  1989年   360篇
  1988年   198篇
  1987年   229篇
  1986年   222篇
  1985年   636篇
  1984年   507篇
  1983年   391篇
  1982年   485篇
  1981年   605篇
  1980年   243篇
  1979年   182篇
  1978年   189篇
  1977年   144篇
  1976年   155篇
  1975年   181篇
  1974年   180篇
  1973年   161篇
  1972年   188篇
  1971年   148篇
  1970年   143篇
  1969年   147篇
  1967年   142篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
331.
Ionosphere response to severe geomagnetic storms that occurred in 2001–2003 was analyzed using data of global ionosphere maps (GIM), altimeter data from the Jason-1 and TOPEX satellites, and data of GPS receivers on-board CHAMP and SAC-C satellites. This allowed us to study in detail ionosphere redistribution due to geomagnetic storms, dayside ionospheric uplift and overall dayside TEC increase. It is shown that after the interplanetary magnetic field turns southward and intensifies, the crests of the equatorial ionization anomaly (EIA) travel poleward and the TEC value within the EIA area increases significantly (up to ∼50%). GPS data from the SAC-C satellite show that during the main phase of geomagnetic storms TEC values above the altitude of 715 km are 2–3 times higher than during undisturbed conditions. These effects of dayside ionospheric uplift occur owing to the “super-fountain effect” and last few hours while the enhanced interplanetary electric field impinged on the magnetopause.  相似文献   
332.
A database of electron temperature (Te) measurements comprising of most of the available satellite measurements in the topside ionosphere is used for studying the solar activity variations of the electron temperature Te at different latitudes, altitudes, local times and seasons. The Te data are grouped into three levels of solar activity (low, medium, high) at four altitude ranges, for day and night, and for equinox and solstices. We find that in general Te changes with solar activity are small and comparable in magnitude with seasonal changes but much smaller than the changes with altitude, latitude, and from day to night. In all cases, except at low altitude during daytime, Te increases with increasing solar activity. But this increase is not linear as assumed in most empirical Te models but requires at least a parabolic approximation. At 550 km during daytime negative as well as positive correlation is found with solar activity. Our global data base allows to quantify the latitude range and seasonal conditions for which these correlations occur. A negative correlation with solar activity is found in the invdip latitude range from 20 to 55 degrees during equinox and from 20 degrees onward during winter. In the low latitude (20 to −20 degrees invdip) F-region there is almost no change with solar activity during solstice and a positive correlation during equinox. A positive correlation is also observed during summer from 30 degrees onward.  相似文献   
333.
The purpose of this study was to evaluate dose–response relationships for the in vivo induction of micronuclei (MN) as a measure of both initial radiation damage and the induction of genomic instability. These measurements were made in mouse blood erythrocytes as a function of radiation dose, radiation quality, time after irradiation, and the genetic background of exposed individuals. Blood samples were collected from two strains of mouse (CBA/CaJ and C57BL/6J) at different times up to 3 months following a whole-body exposure to various doses of 1 GeV/amu 56Fe ions (0, 0.1, 0.5 and 1.0 Gy, at the dose rate of a 1 Gy/min) or 137Cs gamma rays (0, 0.5, 1.0 and 3.0 Gy, at the dose rate of 0.72 Gy/min). Blood-smear slides were stained with acridine orange (AO). The frequencies of MN were measured in mature normochromatic-erythrocytes (MN-NCEs) and in immature polychromatic-erythrocytes (MN-PCEs). Effects of both types of radiation on erythropoiesis were also evaluated. As a measure of cell progression delay, a dose-dependent decrease in numbers of PCEs was observed at day 2 post-exposure in both strains, regardless of radiation quality. Subsequently, the levels of PCEs increased in all exposed mice, reaching control levels (or higher) by day 7 post-exposure. Further, at day 2 after the exposure, there was no increase in the frequency of MN-PCEs in CBA/CaJ mice exposed to 56Fe ions while the frequency of MN-PCEs elevated as a function of dose in the C57BL/6J mice. At day 4, there was no dose related increase in MN-NCEs in either strain of mouse exposed to 137Cs gamma rays. Additionally, at the early sacrifice times (days 2 and 4), 56Fe ions were slightly more effective (per unit dose) in inducing MN-NCEs than 137Cs gamma rays in CBA/CaJ mice. However, there was no increase in the frequency of MN-NCEs at late times after an acute exposure to either type of radiation. In contrast, both types of radiation induced increased MN-PCEs frequencies in irradiated CBA/CaJ mice, but not C57BL/6J mice, at late times post-exposure. This finding indicates the potential induction of genomic instability in hematopoietic cells of CBA/CaJ mice by both types of radiation. The finding also demonstrates the influence of genetic background on radiation-induced genomic instability in vivo.  相似文献   
334.
Since 1954 a research team (called SVIRCO) has been performing measurements of cosmic rays in Rome at La Sapienza University till 1997 and then at Roma Tre University. The experimental work carried out over more than 50 years is summarized in this paper. It describes: the early history of SVIRCO, the evolution from SVIRCO station to SVIRCO observatory, land and sea cosmic-ray surveys and the mini-network of neutron monitors, operating inside the world-wide network of cosmic ray detectors.  相似文献   
335.
336.
The potential for exposure to large solar particle events (SPEs) with high energy levels is a major concern during interplanetary transfer and extra-vehicular activities (EVAs) on the lunar and Mars surface. Previously, we have used data from the last 5 solar cycles to estimate percentiles of dose to a typical blood-forming organ (BFO) for a hypothetical astronaut in a nominally shielded spacecraft during a 120-d lunar mission. As part of this process, we made use of complete energy spectra for 34 large historical SPEs to calculate what the BFO mGy-Eq dose would have been in the above lunar scenario for each SPE. From these calculated doses, we then developed a prediction model for BFO dose based solely on an assumed value of integrated fluence above 30 MeV (Φ30) for an otherwise unspecified future SPE. In this study, we reasoned that since BFO dose is determined more by protons with higher energies than by those with lower energies, more accurate BFO dose prediction models could be developed using integrated fluence above 60 (Φ60) and above 100 MeV (Φ100) as predictors instead of Φ30. However to calculate the unconditional probability of a BFO dose exceeding a pre-specified limit (“BFO dose risk”), one must also take into account the distribution of the predictor (Φ30,Φ60, or Φ100), as estimated from historical SPEs. But Φ60 and Φ100 have more variability, and less available historical information on which to estimate their distributions over many SPE occurrences, than does Φ30. Therefore, when estimating BFO dose risk there is a tradeoff between increased BFO dose prediction at a given energy threshold and decreased accuracy of models for describing the distribution of that threshold over future SPEs as the threshold increases. Even when taking the second of these two factors into account, we still arrived at the conclusion that overall prediction improves as the energy level threshold increases from 30 to 60 to 100 MeV. These results can be applied to the development of approaches to improve radiation protection of astronauts and the optimization of mission planning for future space missions.  相似文献   
337.
The resulting L-distributions and energy spectra of energetic magnetospheric electrons obtained from numerical solution of the radiation belt transport equation with and without accounting for electron synchrotron energy losses are compared. It is demonstrated that synchrotron losses play an important role in formation of the space and energetic distributions of electrons in the inner magnetosphere.  相似文献   
338.
Thin Current Sheets (TCS) are regularly formed prior to substorm breakup, even in the near-Earth plasma sheet, as close as the geostationary orbit. A self-consistent kinetic theory describing the response of the plasma sheet to an electromagnetic perturbation is given. This perturbation corresponds to an external forcing, for instance caused by the solar wind (not an internal instability). The equilibrium of the configuration of this TCS in the presence of a time varying perturbation is shown to produce a strong parallel thermal anisotropy (T T) of energetic electrons and ions (E>50keV) as well as an enhanced diamagnetic current carried by low energy ions (E<50keV). Both currents tend to enhance the confinement of this current sheet near the magnetic equator. These results are compared with data gathered by GEOS-2 at the geostationary orbit, where the magnetic signatures of TCS, and parallel anisotropics are regularly observed prior to breakup. By ensuring quasi-neutrality everywhere we find, when low frequency electromagnetic perturbations are applied, that although the magnetic field line remains an equipotential to the lowest order in Te/Ti, a field-aligned potential drop exists to the next order in (Te/Ti). Thus the development of a TCS implies the formation of a field-aligned potential drop ( few hundred volts) to ensure the quasi-neutrality everywhere. For an earthward directed pressure gradient, a field-aligned electric field, directed towards the ionosphere, is obtained, on the western edge of the perturbation (i.e. western edge of the current sheet). Thus field aligned beams of electrons are expected to flow towards the equatorial region on the western edge of the current sheet. We study the stability of these electron beams and show that they are unstable to “High Frequency” (HF) waves. These “HF” waves are regularly observed at frequencies of the order of the proton gyrofrequency (fH+) just before, or at breakup. The amplitude of these HF waves is so large that they can produce a strong pitch-angle diffusion of energetic ions and a spatial diffusion that leads to a reduction of the diamagnetic current. The signature of a fast ion diffusion is indeed regularly observed during the early breakup; it coincides with the sudden development of large amplitude transient fluctuations, ballooning modes, observed at much lower frequencies (fH+). These results suggest that the HF waves, generated by field-aligned electron beams, provide the dissipation which is necessary to destabilize low frequency (ballooning) modes.  相似文献   
339.
1994年2月21日行星际激波引起的磁暴   总被引:2,自引:0,他引:2  
利用Imp-8,Geotail和Goes-6等卫星资料,研究了1994年2月21日0900UT到达地球磁层的行星际激波引起的磁暴期间,从太阳风向磁层传输能量的有关问题.结果指出:(1)南向行星际磁场(IMF)的长持续时间不是太阳风向磁层输能的必要条件.南北振荡的,较强IMF也能产生显著的能量传输;(2)行星际扰动磁场通过弓激波和磁层顶后扰动磁能增加,增幅将近5倍;(3)在磁层内扰动磁场的Bz分量在1×10-4Hz附近显著被吸收.这一低频扰动磁场可能是磁暴期间导致氧离子和质子等环电流粒子向内扩散并被加速的原因之一.  相似文献   
340.
The Wind   spacecraft’s Faraday cups (FC) continue to produce high-quality, in situ observations of thermal protons (i.e., ionized hydrogen) and αα-particles (i.e., fully ionized helium) in the solar wind. By fitting a Wind/FC ion spectrum with a model velocity distribution function (VDF) for each particle species, values for density, bulk velocity, and temperature can be inferred. Incorporating measurements of the background magnetic field from the Wind Magnetic Field Investigation (MFI) allows perpendicular and parallel temperature components to be separated. Prior implementations of this analysis averaged the higher-cadence Wind/MFI measurements to match that of the Wind/FC ion spectra. However, this article summarizes recent and extensive revisions to the analysis software that, among other things, eliminate such averaging and thereby account for variations in the direction of the magnetic field over the time taken to measure the ions. A statistical comparison reveals that the old version consistently underestimates the temperature anisotropy of ion VDF’s: averaging over fluctuations in the magnetic field essentially blurs the perpendicular and parallel temperature components, which makes the plasma seem artificially more isotropic. The new version not only provides a more accurate dataset of ion parameters (which is well suited to the study of microkinetic phenomena), it also demonstrates a novel technique for jointly processing particle and field data. Such methods are crucial to heliophysics as wave-particle interactions are increasingly seen as playing an important role in the dynamics of the solar wind and similar space plasmas.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号