首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   325篇
  免费   33篇
  国内免费   35篇
航空   200篇
航天技术   78篇
综合类   27篇
航天   88篇
  2022年   3篇
  2021年   14篇
  2020年   7篇
  2019年   6篇
  2018年   6篇
  2017年   10篇
  2016年   8篇
  2015年   9篇
  2014年   20篇
  2013年   14篇
  2012年   6篇
  2011年   26篇
  2010年   5篇
  2009年   13篇
  2008年   9篇
  2007年   6篇
  2006年   7篇
  2005年   20篇
  2004年   16篇
  2003年   34篇
  2002年   41篇
  2001年   13篇
  2000年   6篇
  1999年   9篇
  1997年   4篇
  1996年   6篇
  1995年   5篇
  1994年   6篇
  1993年   8篇
  1991年   2篇
  1989年   6篇
  1986年   3篇
  1985年   3篇
  1984年   3篇
  1981年   2篇
  1980年   2篇
  1978年   3篇
  1976年   1篇
  1975年   4篇
  1974年   1篇
  1973年   1篇
  1972年   6篇
  1971年   1篇
  1970年   3篇
  1969年   1篇
  1968年   1篇
  1967年   4篇
  1966年   2篇
  1963年   2篇
  1962年   1篇
排序方式: 共有393条查询结果,搜索用时 15 毫秒
101.
Energy release in solar flares occurs during the impulsive phase, which is a period of a few to about ten minutes, during which energy is injected into the flare region in bursts with durations of various time scales, from a few tens of seconds down to 0.1 s or even shorter. Non-thermal heating is observed during a short period, not longer than a few minutes, in the very first part of the impulsive phase; in average flares, with ambient particle densities not larger than a few times 1010 cm–3 it is due to thick-target electron beam injection, causing chromospheric ablation followed by convection. In flares with larger densities the heating is due to thermal fronts (Section 1). The average energy released in chromospheric regions is a few times 1030 erg, and an average number of 1038 electrons with E 15 keV is accelerated. In subsecond pulses these values are about 1035 electrons and about 1027 erg per subsecond pulse. The total energy released in flares is larger than these values (Section 2). Energization occurs gradually, in a series of fast non-explosive flux-thread interactions, on the average at levels about 104 km above the solar photosphere, a region permeated by a large number ( 10) of fluxthreads, each carrying electric currents of 1010–1011 A. The energy is fed into the flare by differential motions of magnetic fields driven by photospheric-chromospheric movements (Section 3). In contrast to these are the high-energy flares, characterized by the emission of gamma-radiation and/or very high-frequency (millimeter) radiobursts. Observations of such flares, of the flare neutron emission, as well as the observation of 3He-rich interplanetary plasma clouds from flares all point to a common source, identified with shortlived ( 0.1 s) superhot ( 108 K) flare knots, situated in chromospheric levels (Section 4). Pre-flare phenomena and the existence of homologous flares prove that flare energization can occur repeatedly in the same part of an active region: the consequent conclusions are that only seldom the full energy of an active region is exhausted in one flare, or that the flare energy is generated anew between homologous flares; this latter case looks more probable (Section 5). Flare energization requires the formation of direct electric fields, in value comparable with, or somewhat smaller than the Dreicer field (Section 6). Such fields originate by current-thread reconnection in a regime in which the current sheet is thin enough to let resistive instability originate (Section 7). Particle acceleration occurs by fast reconnection in magnetic fields 100 G and electric fields exceeding about 0.3 times the Dreicer field at fairly low particle densities ( 1010 cm–3); for larger densities plasma heating is expected to occur (Section 8). Transport of accelerated particles towards interplanetary space demands a field-line configuration open to space. Such a configuration originates mainly after the gradual gamma-ray/proton flares, and particularly after two-ribbon flares; these flares belong to the dynamic flares in Sturrock and vestka's flare classification. Acceleration to GeV energies occurs subsequently in shock waves, probably by first-order Fermi acceleration (Section 9).  相似文献   
102.
关于外语专业数学教学的调查实践与思考   总被引:1,自引:1,他引:0  
从当前高等教育研究中的学科交叉、文理渗透这一背景出发,介绍了对国内部分院校外语类专业数学教学情况的调查分析与作者在这方面的教学实践。针对人文专业数学教学的特点,就如何有效、合理地开展教学进行了思考。  相似文献   
103.
104.
提出了利用非均匀线性阵列(Non-uniform linear array,NLA)对多输入多输出(Multiple-input multipleoutput,MIMO)雷达系统进行阵列配置优化的方法。在传统的相控阵雷达中,非均匀线性阵列配置被用来形成较窄的波束方向图,而在MIMO雷达中,利用非均匀线性阵列来获得更多的互不相同的虚拟阵元,以此来提高雷达的参数可辨识性能。文中所采用的一种非均匀线性阵列是最小冗余线性阵列,并给出了一种在物理阵元数量较大时最小冗余线性阵列的生成方法。实验结果表明:与均匀线性阵列(Uniform linear array,ULA)配置的MIMO雷达相比,非均匀线性阵列MIMO雷达能够利用较少的物理天线阵元获得相同的参数可辨识性能;而在两种配置的雷达系统的物理阵元个数相同的情况下,非均匀线性阵列MIMO雷达可以获得更大的阵列孔径长度和更低的克拉美.罗界。  相似文献   
105.
Debris discs around stars were first discovered by the Infrared Astronomical Satellite (IRAS) in 1983. For the first time material orbiting another star than the Sun, but distinct from a circumstellar envelope, was observed through its far infrared emission. This major discovery motivated astronomers to investigate those discs by further analyzing the IRAS data, using ground-based telescopes for the hunting of exoplanets, developing several projects using the Infrared Space Observatory (ISO), and now exploiting the ISO Data Archive (IDA). This review presents the main ISO results, statistical as well as individual, on debris discs in orbit around pre-main-sequence and main-sequence stars. Based on observations with ISO, an ESA project with instruments funded by ESA Member States (especially the PI countries: France, Germany, The Netherlands, and the United Kingdom), and with the participation of ISAS and NASA.  相似文献   
106.
This paper reports on DNA DSB induction in human fibroblasts by iron ions of different energies, namely 5, 1 GeV/u, 414 and 115 MeV/u, in absence or presence of different shields (PMMA, Al and Pb). Measure of DNA DSB was performed by calibrated Pulsed Field Gel Electrophoresis using the fragment counting method. The RBE-LET relationships for unshielded and shielded beams were obtained both in terms of dose average LET and of track average LET. Weak dependence on these parameters was observed for DSB induction. The shielding efficiency, evaluated by the ratio between the cross sections for unshielded and shielded beams, depends not only on the shield type and thickness, but also on the beam energy. Protection is only observed at high iron ions energy, especially at 5 GeV/u, where PMMA shield gives higher protection compared to Al or Pb shields of the same thickness expressed in g/cm2.  相似文献   
107.
The problem of detecting distributed targets in compound-Gaussian noise with unknown statistics is considered. At the design stage, in order to cope with the a priori uncertainty, we model noise returns as Gaussian vectors with the same structure of the covariance matrix, but possibly different power levels. We also assume that a set of secondary data, free of signal components, is available to estimate the covariance matrix of the disturbance. Since no uniformly most powerful test exists for the problem at hand we devise and assess two detection strategies based on the Rao test, and the Wald test respectively. Remarkably these detectors ensure the constant false alarm rate property with respect to both the structure of the covariance matrix as well as the power levels. Moreover, the performance assessment, conducted also in comparison with the generalized likelihood ratio test based receiver, shows that the Wald test outperforms the others and is very effective in scenarios of practical interest for radar systems.  相似文献   
108.
Brasseur  G.  De Baets  P.  De Rudder  A. 《Space Science Reviews》1983,34(4):377-385
Space Science Reviews - The variation in the solar irradiance related for example to the 11-year cycle leads to changes in the photodissociation and photo-ionization of the upper and middle...  相似文献   
109.
分别探讨了国内外各科研机构研制的超声波钻探器的原理及性能特点,重点针对超声波钻探器的钻进过程优化问题,分析了现有的超声波钻探器作动方式的改进过程,结果表明:超声波钻探器在理论及试验研究方面都相对成熟,是未来地外天体采样任务中优势突出、可工程实现的钻探平台;并且轻质、结构紧凑的回转冲击式超声波钻探器更具有应用前景。对压电换能器模型和超声波钻探器集成模型分别进行了综述,指出了各种模型的优缺点及适用条件。对超声波钻探器驱动电源进行了综述,给出了设计驱动电源需重点关注的问题。依据星体探测的任务特点,对超声波钻探器在未来星体探测中的预研成果进行了探讨。最后对超声波钻探器研究和应用的发展趋势进行了展望。  相似文献   
110.
The HOPE mass spectrometer of the Radiation Belt Storm Probes (RBSP) mission (renamed the Van Allen Probes) is designed to measure the in situ plasma ion and electron fluxes over 4π sr at each RBSP spacecraft within the terrestrial radiation belts. The scientific goal is to understand the underlying physical processes that govern the radiation belt structure and dynamics. Spectral measurements for both ions and electrons are acquired over 1 eV to 50 keV in 36 log-spaced steps at an energy resolution ΔE FWHM/E≈15 %. The dominant ion species (H+, He+, and O+) of the magnetosphere are identified using foil-based time-of-flight (TOF) mass spectrometry with channel electron multiplier (CEM) detectors. Angular measurements are derived using five polar pixels coplanar with the spacecraft spin axis, and up to 16 azimuthal bins are acquired for each polar pixel over time as the spacecraft spins. Ion and electron measurements are acquired on alternate spacecraft spins. HOPE incorporates several new methods to minimize and monitor the background induced by penetrating particles in the harsh environment of the radiation belts. The absolute efficiencies of detection are continuously monitored, enabling precise, quantitative measurements of electron and ion fluxes and ion species abundances throughout the mission. We describe the engineering approaches for plasma measurements in the radiation belts and present summaries of HOPE measurement strategy and performance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号