全文获取类型
收费全文 | 2256篇 |
免费 | 10篇 |
国内免费 | 10篇 |
专业分类
航空 | 1091篇 |
航天技术 | 817篇 |
综合类 | 10篇 |
航天 | 358篇 |
出版年
2021年 | 22篇 |
2018年 | 38篇 |
2017年 | 21篇 |
2016年 | 26篇 |
2014年 | 48篇 |
2013年 | 57篇 |
2012年 | 49篇 |
2011年 | 91篇 |
2010年 | 64篇 |
2009年 | 90篇 |
2008年 | 97篇 |
2007年 | 52篇 |
2006年 | 43篇 |
2005年 | 57篇 |
2004年 | 70篇 |
2003年 | 73篇 |
2002年 | 37篇 |
2001年 | 57篇 |
2000年 | 39篇 |
1999年 | 47篇 |
1998年 | 67篇 |
1997年 | 42篇 |
1996年 | 67篇 |
1995年 | 79篇 |
1994年 | 55篇 |
1993年 | 49篇 |
1992年 | 64篇 |
1991年 | 30篇 |
1990年 | 19篇 |
1989年 | 49篇 |
1988年 | 23篇 |
1987年 | 20篇 |
1986年 | 21篇 |
1985年 | 85篇 |
1984年 | 53篇 |
1983年 | 53篇 |
1982年 | 60篇 |
1981年 | 72篇 |
1980年 | 21篇 |
1979年 | 26篇 |
1978年 | 26篇 |
1977年 | 26篇 |
1976年 | 20篇 |
1975年 | 20篇 |
1974年 | 20篇 |
1973年 | 11篇 |
1972年 | 14篇 |
1970年 | 18篇 |
1969年 | 19篇 |
1967年 | 10篇 |
排序方式: 共有2276条查询结果,搜索用时 15 毫秒
171.
172.
David G. Sibeck R. Allen H. Aryan D. Bodewits P. Brandt G. Branduardi-Raymont G. Brown J. A. Carter Y. M. Collado-Vega M. R. Collier H. K. Connor T. E. Cravens Y. Ezoe M.-C. Fok M. Galeazzi O. Gutynska M. Holmström S.-Y. Hsieh K. Ishikawa D. Koutroumpa K. D. Kuntz M. Leutenegger Y. Miyoshi F. S. Porter M. E. Purucker A. M. Read J. Raeder I. P. Robertson A. A. Samsonov S. Sembay S. L. Snowden N. E. Thomas R. von Steiger B. M. Walsh S. Wing 《Space Science Reviews》2018,214(4):79
Both heliophysics and planetary physics seek to understand the complex nature of the solar wind’s interaction with solar system obstacles like Earth’s magnetosphere, the ionospheres of Venus and Mars, and comets. Studies with this objective are frequently conducted with the help of single or multipoint in situ electromagnetic field and particle observations, guided by the predictions of both local and global numerical simulations, and placed in context by observations from far and extreme ultraviolet (FUV, EUV), hard X-ray, and energetic neutral atom imagers (ENA). Each proposed interaction mechanism (e.g., steady or transient magnetic reconnection, local or global magnetic reconnection, ion pick-up, or the Kelvin-Helmholtz instability) generates diagnostic plasma density structures. The significance of each mechanism to the overall interaction (as measured in terms of atmospheric/ionospheric loss at comets, Venus, and Mars or global magnetospheric/ionospheric convection at Earth) remains to be determined but can be evaluated on the basis of how often the density signatures that it generates are observed as a function of solar wind conditions. This paper reviews efforts to image the diagnostic plasma density structures in the soft (low energy, 0.1–2.0 keV) X-rays produced when high charge state solar wind ions exchange electrons with the exospheric neutrals surrounding solar system obstacles.The introduction notes that theory, local, and global simulations predict the characteristics of plasma boundaries such the bow shock and magnetopause (including location, density gradient, and motion) and regions such as the magnetosheath (including density and width) as a function of location, solar wind conditions, and the particular mechanism operating. In situ measurements confirm the existence of time- and spatial-dependent plasma density structures like the bow shock, magnetosheath, and magnetopause/ionopause at Venus, Mars, comets, and the Earth. However, in situ measurements rarely suffice to determine the global extent of these density structures or their global variation as a function of solar wind conditions, except in the form of empirical studies based on observations from many different times and solar wind conditions. Remote sensing observations provide global information about auroral ovals (FUV and hard X-ray), the terrestrial plasmasphere (EUV), and the terrestrial ring current (ENA). ENA instruments with low energy thresholds (\(\sim1~\mbox{keV}\)) have recently been used to obtain important information concerning the magnetosheaths of Venus, Mars, and the Earth. Recent technological developments make these magnetosheaths valuable potential targets for high-cadence wide-field-of-view soft X-ray imagers.Section 2 describes proposed dayside interaction mechanisms, including reconnection, the Kelvin-Helmholtz instability, and other processes in greater detail with an emphasis on the plasma density structures that they generate. It focuses upon the questions that remain as yet unanswered, such as the significance of each proposed interaction mode, which can be determined from its occurrence pattern as a function of location and solar wind conditions. Section 3 outlines the physics underlying the charge exchange generation of soft X-rays. Section 4 lists the background sources (helium focusing cone, planetary, and cosmic) of soft X-rays from which the charge exchange emissions generated by solar wind exchange must be distinguished. With the help of simulations employing state-of-the-art magnetohydrodynamic models for the solar wind-magnetosphere interaction, models for Earth’s exosphere, and knowledge concerning these background emissions, Sect. 5 demonstrates that boundaries and regions such as the bow shock, magnetosheath, magnetopause, and cusps can readily be identified in images of charge exchange emissions. Section 6 reviews observations by (generally narrow) field of view (FOV) astrophysical telescopes that confirm the presence of these emissions at the intensities predicted by the simulations. Section 7 describes the design of a notional wide FOV “lobster-eye” telescope capable of imaging the global interactions and shows how it might be used to extract information concerning the global interaction of the solar wind with solar system obstacles. The conclusion outlines prospects for missions employing such wide FOV imagers. 相似文献
173.
A. V. Streltsov J.-J. Berthelier A. A. Chernyshov V. L. Frolov F. Honary M. J. Kosch R. P. McCoy E. V. Mishin M. T. Rietveld 《Space Science Reviews》2018,214(8):118
Active ionospheric experiments using high-power, high-frequency transmitters, “heaters”, to study plasma processes in the ionosphere and magnetosphere continue to provide new insights into understanding plasma and geophysical proceses. This review describes the heating facilities, past and present, and discusses scientific results from these facilities and associated space missions. Phenomena that have been observed with these facilities are reviewed along with theoretical explanations that have been proposed or are commonly accepted. Gaps or uncertainties in understanding of heating-initiated phenomena are discussed together with proposed science questions to be addressed in the future. Suggestions for improvements and additions to existing facilities are presented including important satellite missions which are necessary to answer the outstanding questions in this field. 相似文献
174.
This paper presents an analytical solution for static analysis of thick rectangular beams with different boundary conditions.Carrera's Unified Formulation (CUF) is used in order to consider shear deformation theories of arbitrary order.The novelty of the present work is that a boundary discontinuous Fourier approach is used to consider clamped boundary conditions in the analytical solution,unlike Navier-type solutions which are restricted to simply supported beams.Governing equations are obtained by employing the principle of virtual work.The numerical accuracy of results is ascertained by studying the convergence of the solution and comparing the results to those of a 3D finite element solution.Beams subjected to bending due to a uniform pressure load and subjected to torsion due to opposite linear forces are considered.Overall,accurate results close to those of 3D finite element solutions are obtained,which can be used to validate finite element results or other approximate methods. 相似文献
175.
Leslie A. Young S. Alan Stern Harold A. Weaver Fran Bagenal Richard P. Binzel Bonnie Buratti Andrew F. Cheng Dale Cruikshank G. Randall Gladstone William M. Grundy David P. Hinson Mihaly Horanyi Donald E. Jennings Ivan R. Linscott David J. McComas William B. McKinnon Ralph McNutt Jeffery M. Moore Scott Murchie Catherine B. Olkin Carolyn C. Porco Harold Reitsema Dennis C. Reuter John R. Spencer David C. Slater Darrell Strobel Michael E. Summers G. Leonard Tyler 《Space Science Reviews》2008,140(1-4):93-127
The New Horizons spacecraft will achieve a wide range of measurement objectives at the Pluto system, including color and panchromatic maps, 1.25–2.50 micron spectral images for studying surface compositions, and measurements of Pluto’s atmosphere (temperatures, composition, hazes, and the escape rate). Additional measurement objectives include topography, surface temperatures, and the solar wind interaction. The fulfillment of these measurement objectives will broaden our understanding of the Pluto system, such as the origin of the Pluto system, the processes operating on the surface, the volatile transport cycle, and the energetics and chemistry of the atmosphere. The mission, payload, and strawman observing sequences have been designed to achieve the NASA-specified measurement objectives and maximize the science return. The planned observations at the Pluto system will extend our knowledge of other objects formed by giant impact (such as the Earth–moon), other objects formed in the outer solar system (such as comets and other icy dwarf planets), other bodies with surfaces in vapor-pressure equilibrium (such as Triton and Mars), and other bodies with N2:CH4 atmospheres (such as Titan, Triton, and the early Earth). 相似文献
176.
Ranging airport pseudolite for local area augmentation 总被引:2,自引:0,他引:2
This paper discusses the integration of an airport pseudolite (APL) into a local area augmented differential GPS based precision approach system. A prototype architecture is described that is being used to develop requirements for the local area augmentation system. Key features of this prototype system are presented along with its current performance. Key features discussed include the use of a multipath limiting antenna, APL signal structure factors, a unique APL automatic gain control, and GPS blanking technique to maximize APL tracking performance, while minimizing the electromagnetic interference to nominal DGPS performance 相似文献
177.
Lindsay JF 《Astrobiology》2008,8(4):823-839
There is a growing body of evidence which suggests that the evolution of the planet drives the evolution of the biosphere. There have been 2 significant stages in Earth history when atmospheric oxygen levels rose rapidly, and both appear to be associated with supercontinent cycles. The earlier biospheric event, which extends across the Archean-Proterozoic boundary (ca. 3.0-2.2 Ga), has received little attention and is the focus of this study. Recent work on the Pilbara Craton of Western Australia has shown that concretion formed by microbial activity during the diagenesis of these sediments are absent from early Archean sediments but abundant in late Archean and early Paleoproterozoic successions of the Hamersley Basin, appearing abruptly in sedimentary rocks younger than 2.7 Ga. This study suggests that their internal architecture may have been defined by the diffusion of humic acids and the formation of polymer gels during diagenesis. The data imply that the biosphere expanded suddenly shortly after 3.0 Ga and may have begun to raise the oxygen levels of the oceanic water column earlier than thought-possibly as much as 300 my earlier. 相似文献
178.
A. V. Zyuzgin A. I. Ivanov V. I. Polezhaev G. F. Putin E. B. Soboleva 《Cosmic Research》2001,39(2):175-186
The results of processing and interpreting the data of joint Russian–French experiments for studying the heat and mass transfer in near-critical fluids are presented. The experiments were carried out with the ALICE-1 instrument during an orbital flight of the Mirstation from September 30 to October 2, 1995 [1]. For such fluids with a point-like source of heat, when they are placed in the field of uncontrolled inertial accelerations of the spacecraft, the influence of thermovibrational and thermogravitational mechanisms of convection on the propagation of the region of optical irregularity is investigated. It is shown that, near the thermodynamic critical point, local heating of the medium leads to generation of either intense thermogravitational convection or averaged vibroconvective flow, depending on the frequency of variations of the microaccelerations. The structure and characteristics of discovered motions are studied. The results of numerical simulations are presented that confirm the conclusion about a possibility of generation of an averaged convective flow of a vibrational type by the high-frequency component of microaccelerations. 相似文献
179.
If life ever existed, or still exists, on Mars, its record is likely to be found in minerals formed by, or in association with, microorganisms. An important concept regarding interpretation of the mineralogical record for evidence of life is that, broadly defined, life perturbs disequilibria that arise due to kinetic barriers and can impart unexpected structure to an abiotic system. Many features of minerals and mineral assemblages may serve as biosignatures even if life does not have a familiar terrestrial chemical basis. Biological impacts on minerals and mineral assemblages may be direct or indirect. Crystalline or amorphous biominerals, an important category of mineralogical biosignatures, precipitate under direct cellular control as part of the life cycle of the organism (shells, tests, phytoliths) or indirectly when cell surface layers provide sites for heterogeneous nucleation. Biominerals also form indirectly as by-products of metabolism due to changing mineral solubility. Mineralogical biosignatures include distinctive mineral surface structures or chemistry that arise when dissolution and/or crystal growth kinetics are influenced by metabolic by-products. Mineral assemblages themselves may be diagnostic of the prior activity of organisms where barriers to precipitation or dissolution of specific phases have been overcome. Critical to resolving the question of whether life exists, or existed, on Mars is knowing how to distinguish biologically induced structure and organization patterns from inorganic phenomena and inorganic self-organization. This task assumes special significance when it is acknowledged that the majority of, and perhaps the only, material to be returned from Mars will be mineralogical. 相似文献
180.
This paper analyses the fuel consumption of interferometric radar missions employing small satellite formations like, e.g., Cross-track Pendulum, Cartwheel, CarPe, or Trinodal Pendulum. Individual analytic expressions are provided for each of the following contributions: separation from a simultaneously injected master satellite, formation set-up, orbit maintenance, formation maintenance, and distance maintenance. For this, a general system of equations is derived describing the relative motion of the small satellites in a co-rotating reference frame. The transformation into Keplerian elements is carried out. To evaluate fuel consumption, three master satellites are assumed in different orbital heights, which are typical for Earth observation missions. The size of the exemplarily analysed formations is defined by remote sensing aspects and their respective fuel requirements are estimated. Furthermore, a collision avoidance concept is introduced, which includes a formation separation and formation set-up after a desired time period. 相似文献