首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   0篇
航空   13篇
航天技术   9篇
航天   3篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2011年   2篇
  2009年   1篇
  2008年   5篇
  2007年   2篇
  2006年   1篇
  2000年   1篇
  1999年   1篇
  1997年   3篇
  1989年   1篇
  1985年   1篇
排序方式: 共有25条查询结果,搜索用时 15 毫秒
21.
Processing of the data from onboard sensors collected during multi-year experiments on Salyut and Mir orbital stations, resulting in new information on the integral spatial density of meteoroid and technogenic bodies (MTBs), helped us to reveal certain peculiarities in the quantitative distribution of impacts of such bodies on spacecraft and to identify some of their physico-dynamic parameters. Experimental data give grounds for questioning the Poisson nature of the distribution of MTBs impacting on spacecraft.  相似文献   
22.
Smirnov  V.M.  Semenov  A.S.  Sokolov  V.G.  Konoshenko  V.P.  Kovalyov  I.I. 《Space Debris》2000,2(1):1-7
A study of micrometeoroid and orbital debris (MMOD) long-term effects on solar cell samples of solar panels returned from the space station MIR has been carried out. Five samples from the solar array, which spent over 10 years in space, have been studied with the help of optical microscopes with magnification up to 1000. Craters with dimensions as small as 1m were registered. Additional large impact features were investigated by observing a large number of cells (150) with an optical microscope of small magnification. The aim of the study was to define morphological and statistical characteristics of samples surface damages as well as the extent of surface erosion caused by MMOD impacts. The results of statistical analysis of the data obtained in this study are shown to correlate with the experimental data obtained in the Hubble Telescope solar panel return experiment, and MMOD flux estimations are in good agreement with modern MMOD models. The relative surface area damaged by impacts of small size (1–100m) MMOD particles is estimated to be 0.01%, while the relative surface area of large impact features (greater than 0.1mm) is estimated to be 0.045%.  相似文献   
23.
We revisit an example of “quasi-steady” magnetic reconnection at the dayside magnetopause on February 11, 1998, observed by Equator-S and Geotail at the dawnside magnetopause. Phan et al. [Phan, T.D. et al., 2000. Extended magnetic reconnection at the Earth’s magnetopause from detection of bi-directional jets. Nature 404, 848–850.] reported oppositely directed jets at these spacecrafts and inferred a length of the reconnection line of about 38RE. Pinnock et al. [Pinnock, M., Chisham, G., Coleman, I.J., Freeman, M.P., Hairston, M., Villain, J.-P., 2003. The location and rate of dayside reconnection during an interval of southward interplanetary magnetic field. Ann. Geophys. 21, 1467–1482.] used measurements from SuperDARN radars to show that the reconnection electric field was variable. Here we complement this work by obtaining snapshots of the reconnection electric field from the in situ observations. To do this, we apply a reconstruction method based on a model of compressible Petschek-type magnetic reconnection. This independent method uses magnetic field observations as input data to calculate the reconnection electric field. We obtain average values of Erec in the range of 0.4–2.4 mV/m. Further we infer a distance perpendicular to the reconnection line of 0.4–0.6RE. The model results are compared with the two studies mentioned above. It thus appears that while the transfer of momentum for this event is indeed large-scale, the actual rate depends on the time it is measured.  相似文献   
24.
The problem of steady-state magnetic reconnection in an infinite current layer in collisionless, incompressible, nonresistive plasma, except of the electron diffusion region, is examined analytically using the electron Hall magnetohydrodynamics approach. It is found that this approach allows reducing the problem to the magnetic field potential finding, while last one has to satisfy the Grad–Shafranov equation. The obtained solution demonstrates all essential Hall reconnection features, namely proton acceleration up to Alfvén velocities, the forming of Hall current systems and the magnetic field structure expected. It turns out that the necessary condition of steady-state reconnection to exist is an electric field potential jump across the electron diffusion region and the separatrices. Besides, the powerful mechanism of electron acceleration in X-line direction is required. It must accelerate electrons up to the electron Alfvén velocity inside the diffusion region and on the separatrixes. This is a necessary condition for steady-state reconnection as well.  相似文献   
25.
This review considers the theory of the magnetic field line reconnection and its application to the problem of the interaction between the solar wind and the Earth's magnetosphere. In particular, we discuss the reconnection models by Sonnerup and by Petschek (for both incompressible and compressible plasmas, for the asymmetric and nonsteady-state cases), the magnetic field annihilation model by Parker; Syrovatsky's model of the current sheet; and Birn's and Schindler's solution for the plasma sheet structure. A review of laboratory and numerical modelling experiments is given.Results concerning the field line reconnection, combined with the peculiarities of the MHD flow, were used in investigating the solar wind flow around the magnetosphere. We found that in the presence of a frozen-in magnetic field, the flow differs significantly from that in a pure gas dynamic case; in particular, at the subsolar. part of the magnetopause a stagnation line appears (i.e., a line along which the stream lines are branching) instead of a stagnation point. The length and location of the stagnation line determine the character of the interaction of the solar wind with the Earth's magnetosphere. We have developed the theory of that interaction for a steady-state case, and compare the results of the calculations with the experimental data.In the last section of the review, we propose a qualitative model of the solar wind — the Earth's magnetosphere interaction in the nonsteady-state case on the basis of the solution of the problem of the spontaneous magnetic field line reconnection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号