排序方式: 共有80条查询结果,搜索用时 0 毫秒
41.
Lunar Reconnaissance Orbiter Camera (LROC) Instrument Overview 总被引:2,自引:0,他引:2
M. S. Robinson S. M. Brylow M. Tschimmel D. Humm S. J. Lawrence P. C. Thomas B. W. Denevi E. Bowman-Cisneros J. Zerr M. A. Ravine M. A. Caplinger F. T. Ghaemi J. A. Schaffner M. C. Malin P. Mahanti A. Bartels J. Anderson T. N. Tran E. M. Eliason A. S. McEwen E. Turtle B. L. Jolliff H. Hiesinger 《Space Science Reviews》2010,150(1-4):81-124
The Lunar Reconnaissance Orbiter Camera (LROC) Wide Angle Camera (WAC) and Narrow Angle Cameras (NACs) are on the NASA Lunar Reconnaissance Orbiter (LRO). The WAC is a 7-color push-frame camera (100 and 400 m/pixel visible and UV, respectively), while the two NACs are monochrome narrow-angle linescan imagers (0.5 m/pixel). The primary mission of LRO is to obtain measurements of the Moon that will enable future lunar human exploration. The overarching goals of the LROC investigation include landing site identification and certification, mapping of permanently polar shadowed and sunlit regions, meter-scale mapping of polar regions, global multispectral imaging, a global morphology base map, characterization of regolith properties, and determination of current impact hazards. 相似文献
42.
With space now crucial to such a wide range of activities on Earth, the USA must ensure the sustainability of its efforts, a task that involves technological feasibility and political will. Near-term challenges include US human access to space and the Shuttle transition, funding NASA sufficiently in a time of recession, and rebuilding the country's space industrial base. Longer-term challenges will be better protecting the space environment (including the electromagnetic spectrum) from overcrowding and the effects of space weather and NEOs, and defining responsibilities for distributing climate change data and recognition of property rights for the commercial development of in-space resources. As an aid to dealing with these challenges the USA must ask itself whether there is a human future in space and seek to answer the question in the course of human and robotic exploration beyond Earth. 相似文献
43.
44.
Peter W. A. Roming Thomas E. Kennedy Keith O. Mason John A. Nousek Lindy Ahr Richard E. Bingham Patrick S. Broos Mary J. Carter Barry K. Hancock Howard E. Huckle S D. Hunsberger Hajime Kawakami Ronnie Killough T Scott Koch Michael K. Mclelland Kelly Smith Philip J. Smith Juan Carlos Soto Patricia T. Boyd Alice A. Breeveld Stephen T. Holland Mariya Ivanushkina Michael S. Pryzby Martin D. Still Joseph Stock 《Space Science Reviews》2005,120(3-4):95-142
The Ultra-Violet/Optical Telescope (UVOT) is one of three instruments flying aboard the Swift Gamma-ray Observatory. It is designed to capture the early (∼1 min) UV and optical photons from the afterglow of gamma-ray
bursts in the 170–600 nm band as well as long term observations of these afterglows. This is accomplished through the use
of UV and optical broadband filters and grisms. The UVOT has a modified Ritchey–Chrétien design with micro-channel plate intensified
charged-coupled device detectors that record the arrival time of individual photons and provide sub-arcsecond positioning
of sources. We discuss some of the science to be pursued by the UVOT and the overall design of the instrument. 相似文献
45.
InSight Mars Lander Robotics Instrument Deployment System 总被引:1,自引:0,他引:1
A. Trebi-Ollennu Won Kim Khaled Ali Omair Khan Cristina Sorice Philip Bailey Jeffrey Umland Robert Bonitz Constance Ciarleglio Jennifer Knight Nicolas Haddad Kerry Klein Scott Nowak Daniel Klein Nicholas Onufer Kenneth Glazebrook Brad Kobeissi Enrique Baez Felix Sarkissian Menooa Badalian Hallie Abarca Robert G. Deen Jeng Yen Steven Myint Justin Maki Ali Pourangi Jonathan Grinblat Brian Bone Noah Warner Jaime Singer Joan Ervin Justin Lin 《Space Science Reviews》2018,214(5):93
The InSight Mars Lander is equipped with an Instrument Deployment System (IDS) and science payload with accompanying auxiliary peripherals mounted on the Lander. The InSight science payload includes a seismometer (SEIS) and Wind and Thermal Shield (WTS), heat flow probe (Heat Flow and Physical Properties Package, HP3) and a precision tracking system (RISE) to measure the size and state of the core, mantle and crust of Mars. The InSight flight system is a close copy of the Mars Phoenix Lander and comprises a Lander, cruise stage, heatshield and backshell. The IDS comprises an Instrument Deployment Arm (IDA), scoop, five finger “claw” grapple, motor controller, arm-mounted Instrument Deployment Camera (IDC), lander-mounted Instrument Context Camera (ICC), and control software. IDS is responsible for the first precision robotic instrument placement and release of SEIS and HP3 on a planetary surface that will enable scientists to perform the first comprehensive surface-based geophysical investigation of Mars’ interior structure. This paper describes the design and operations of the Instrument Deployment Systems (IDS), a critical subsystem of the InSight Mars Lander necessary to achieve the primary scientific goals of the mission including robotic arm geology and physical properties (soil mechanics) investigations at the Landing site. In addition, we present test results of flight IDS Verification and Validation activities including thermal characterization and InSight 2017 Assembly, Test, and Launch Operations (ATLO), Deployment Scenario Test at Lockheed Martin, Denver, where all the flight payloads were successfully deployed with a balloon gravity offload fixture to compensate for Mars to Earth gravity. 相似文献
46.
Bebout BM Carpenter SP Des Marais DJ Discipulo M Embaye T Garcia-Pichel F Hoehler TM Hogan M Jahnke LL Keller RM Miller SR Prufert-Bebout LE Raleigh C Rothrock M Turk K 《Astrobiology》2002,2(4):383-402
Photosynthetic microbial mat communities were obtained from marine hypersaline saltern ponds, maintained in a greenhouse facility, and examined for the effects of salinity variations. Because these microbial mats are considered to be useful analogs of ancient marine communities, they offer insights about evolutionary events during the >3 billion year time interval wherein mats co-evolved with Earth's lithosphere and atmosphere. Although photosynthetic mats can be highly dynamic and exhibit extremely high activity, the mats in the present study have been maintained for >1 year with relatively minor changes. The major groups of microorganisms, as assayed using microscopic, genetic, and biomarker methodologies, are essentially the same as those in the original field samples. Field and greenhouse mats were similar with respect to rates of exchange of oxygen and dissolved inorganic carbon across the mat-water interface, both during the day and at night. Field and greenhouse mats exhibited similar rates of efflux of methane and hydrogen. Manipulations of salinity in the water overlying the mats produced changes in the community that strongly resemble those observed in the field. A collaboratory testbed and an array of automated features are being developed to support remote scientific experimentation with the assistance of intelligent software agents. This facility will permit teams of investigators the opportunity to explore ancient environmental conditions that are rare or absent today but that might have influenced the early evolution of these photosynthetic ecosystems. 相似文献
47.
HUANG Xu-dong CHEN Hai-xin FU Song David Wisler Aspi Wadi G. Scott McNulty 《航空动力学报》2007,22(9):1455-1460
IntroductionVortex is often the essential element re-sponsible for triggering stall and surge in com-pressors.So the identification and the analysisof the vortices in compressor are usually quitehelpful for the understanding of the compressorbehavior.Howe… 相似文献
48.
T.K.K Chamindu Deepagoda Scott B. Jones Markus Tuller Lis Wollesen de Jonge Ken Kawamoto Toshiko Komatsu Per Moldrup 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2014
Growing plants to facilitate life in outer space, for example on the International Space Station (ISS) or at planned deep-space human outposts on the Moon or Mars, has received much attention with regard to NASA’s advanced life support system research. With the objective of in situ resource utilization to conserve energy and to limit transport costs, native materials mined on Moon or Mars are of primary interest for plant growth media in a future outpost, while terrestrial porous substrates with optimal growth media characteristics will be useful for onboard plant growth during space missions. Due to limited experimental opportunities and prohibitive costs, liquid and gas behavior in porous substrates under reduced gravity conditions has been less studied and hence remains poorly understood. Based on ground-based measurements, this study examined water retention, oxygen diffusivity and air permeability characteristics of six plant growth substrates for potential applications in space, including two terrestrial analogs for lunar and Martian soils and four particulate substrates widely used in reduced gravity experiments. To simulate reduced gravity water characteristics, the predictions for ground-based measurements (1 − g) were scaled to two reduced gravity conditions, Martian gravity (0.38 − g) and lunar gravity (0.16 − g), following the observations in previous reduced gravity studies. We described the observed gas diffusivity with a recently developed model combined with a new approach that estimates the gas percolation threshold based on the pore size distribution. The model successfully captured measured data for all investigated media and demonstrated the implications of the poorly-understood shift in gas percolation threshold with improved gas percolation in reduced gravity. Finally, using a substrate-structure parameter related to the gaseous phase, we adequately described the air permeability under reduced gravity conditions. 相似文献
49.
Forbes Jeffrey M. Zhang Xiaoli Hagan Maura E. England Scott L. Liu Guiping Gasperini Federico 《Space Science Reviews》2017,212(1-2):697-713
Space Science Reviews - The National Center for Atmospheric Research (NCAR) Thermosphere Ionosphere Electrodynamics General Circulation Model (TIEGCM) will provide a physics-based context for the... 相似文献
50.
Gordon Chin Scott Brylow Marc Foote James Garvin Justin Kasper John Keller Maxim Litvak Igor Mitrofanov David Paige Keith Raney Mark Robinson Anton Sanin David Smith Harlan Spence Paul Spudis S. Alan Stern Maria Zuber 《Space Science Reviews》2007,129(4):391-419
NASA’s Lunar Precursor Robotic Program (LPRP), formulated in response to the President’s Vision for Space Exploration, will
execute a series of robotic missions that will pave the way for eventual permanent human presence on the Moon. The Lunar Reconnaissance
Orbiter (LRO) is first in this series of LPRP missions, and plans to launch in October of 2008 for at least one year of operation.
LRO will employ six individual instruments to produce accurate maps and high-resolution images of future landing sites, to
assess potential lunar resources, and to characterize the radiation environment. LRO will also test the feasibility of one
advanced technology demonstration package. The LRO payload includes: Lunar Orbiter Laser Altimeter (LOLA) which will determine
the global topography of the lunar surface at high resolution, measure landing site slopes, surface roughness, and search
for possible polar surface ice in shadowed regions, Lunar Reconnaissance Orbiter Camera (LROC) which will acquire targeted
narrow angle images of the lunar surface capable of resolving meter-scale features to support landing site selection, as well
as wide-angle images to characterize polar illumination conditions and to identify potential resources, Lunar Exploration
Neutron Detector (LEND) which will map the flux of neutrons from the lunar surface to search for evidence of water ice, and
will provide space radiation environment measurements that may be useful for future human exploration, Diviner Lunar Radiometer
Experiment (DLRE) which will chart the temperature of the entire lunar surface at approximately 300 meter horizontal resolution
to identify cold-traps and potential ice deposits, Lyman-Alpha Mapping Project (LAMP) which will map the entire lunar surface
in the far ultraviolet. LAMP will search for surface ice and frost in the polar regions and provide images of permanently
shadowed regions illuminated only by starlight. Cosmic Ray Telescope for the Effects of Radiation (CRaTER), which will investigate
the effect of galactic cosmic rays on tissue-equivalent plastics as a constraint on models of biological response to background
space radiation. The technology demonstration is an advanced radar (mini-RF) that will demonstrate X- and S-band radar imaging
and interferometry using light weight synthetic aperture radar. This paper will give an introduction to each of these instruments
and an overview of their objectives. 相似文献