首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17103篇
  免费   28篇
  国内免费   123篇
航空   9723篇
航天技术   4900篇
综合类   235篇
航天   2396篇
  2021年   154篇
  2018年   165篇
  2016年   149篇
  2014年   432篇
  2013年   513篇
  2012年   398篇
  2011年   547篇
  2010年   385篇
  2009年   742篇
  2008年   772篇
  2007年   341篇
  2006年   415篇
  2005年   346篇
  2004年   396篇
  2003年   462篇
  2002年   451篇
  2001年   507篇
  2000年   337篇
  1999年   434篇
  1998年   375篇
  1997年   294篇
  1996年   331篇
  1995年   406篇
  1994年   351篇
  1993年   349篇
  1992年   264篇
  1991年   246篇
  1990年   231篇
  1989年   360篇
  1988年   198篇
  1987年   229篇
  1986年   222篇
  1985年   636篇
  1984年   507篇
  1983年   391篇
  1982年   485篇
  1981年   605篇
  1980年   243篇
  1979年   182篇
  1978年   189篇
  1977年   144篇
  1976年   155篇
  1975年   181篇
  1974年   180篇
  1973年   161篇
  1972年   188篇
  1971年   148篇
  1970年   143篇
  1969年   147篇
  1967年   142篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
621.
Green  J.L.  Benson  R.F.  Fung  S.F.  Taylor  W.W.L.  Boardsen  S.A.  Reinisch  B.W.  Haines  D.M.  Bibl  K.  Cheney  G.  Galkin  I.A.  Huang  X.  Myers  S.H.  Sales  G.S.  Bougeret  J.-L.  Manning  R.  Meyer-Vernet  N.  Moncuquet  M.  Carpenter  D.L.  Gallagher  D.L.  Reiff  P.H. 《Space Science Reviews》2000,91(1-2):361-389
The Radio Plasma Imager (RPI) will be the first-of-its kind instrument designed to use radio wave sounding techniques to perform repetitive remote sensing measurements of electron number density (N e) structures and the dynamics of the magnetosphere and plasmasphere. RPI will fly on the Imager for Magnetopause-to-Aurora Global Exploration (IMAGE) mission to be launched early in the year 2000. The design of the RPI is based on recent advances in radio transmitter and receiver design and modern digital processing techniques perfected for ground-based ionospheric sounding over the last two decades. Free-space electromagnetic waves transmitted by the RPI located in the low-density magnetospheric cavity will be reflected at distant plasma cutoffs. The location and characteristics of the plasma at those remote reflection points can then be derived from measurements of the echo amplitude, phase, delay time, frequency, polarization, Doppler shift, and echo direction. The 500 m tip-to-tip X and Y (spin plane) antennas and 20 m Z axis antenna on RPI will be used to measures echoes coming from distances of several R E. RPI will operate at frequencies between 3 kHz to 3 MHz and will provide quantitative N e values from 10–1 to 105 cm–3. Ray tracing calculations, combined with specific radio imager instrument characteristics, enables simulations of RPI measurements. These simulations have been performed throughout an IMAGE orbit and under different model magnetospheric conditions. They dramatically show that radio sounding can be used quite successfully to measure a wealth of magnetospheric phenomena such as magnetopause boundary motions and plasmapause dynamics. The radio imaging technique will provide a truly exciting opportunity to study global magnetospheric dynamics in a way that was never before possible.  相似文献   
622.
Tobias  S.M.  Weiss  N.O. 《Space Science Reviews》2000,94(1-2):153-160
The 11–year solar activity cycle is magnetic in origin and is responsible for small changes in solar luminosity and the modulation of the solar wind. The terrestrial climate exhibits much internal variability supporting oscillations with many frequencies. The direct effect of changing solar irradiance in driving climatic change is believed to be small, and amplification mechanisms are needed to enhance the role of solar variability. In this paper we demonstrate that resonance may play a crucial role in the dynamics of the climate system, by using the output from a nonlinear solar dynamo model as a weak input to a simplified climate model. The climate is modelled as oscillating about two fixed points (corresponding to a warm and cold state) with the weak chaotically modulated solar forcing on average pushing the solution towards the warm state. When a typical frequency of the input is similar to that of the chaotic climate system then a dramatic increase in the role of the solar forcing is apparent and complicated intermittent behaviour is observed. The nonlinear effects are subtle however, and forcing that on average pushes the solution towards the warm state may lead to increased intervals of oscillation about either state. Owing to the intermittent nature of the timeseries, analysis of the relevant timeseries is shown to be non-trivial.  相似文献   
623.
624.
This contribution describes the formation of circumstellar disks and their earliest evolutionary phases when self-gravity in the disk plays a crucial role in eliciting the transport of mass and angular momentum. We first discuss the formation of protostellar disks within the context of analytic infall-collapse solutions. We then discuss our efforts to understand the behavior of the newly formed disks. Our specific approach consists of performing a detailed analysis of a simplified model disk which is susceptible to the growth of a spiral instability. Using a combination of numerical simulation and semi-analytic analysis, we show how the dramatic early phase of mass and angular momentum transport in the disk can be explained by a second-order nonlinear process involving self-interaction of a dominant two-armed spiral mode. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
625.
Electro Energy Inc. (EEI) is developing high power, long life, bipolar nickel-metal hydride batteries for aerospace applications. Bipolar nickel-metal hydride designs allow for high energy and high power designs with a 25 percent reduction in both weight and volume as compared to prismatic and/or cylindrical Ni-MH designs. Utilizing a sealed wafer cell design EEI has demonstrated a 1.2 kW/kg power capability. Prototype designs have achieved 70 Wh/kg. Designs studies show 80 Wh/kg are achievable with EEI's state-of-the-art technology. The sealed wafer cell is the building block for EEI's high power and high voltage bipolar batteries making the assembly easy and significantly lower in cost. Satellite and aircraft batteries are being developed which provide high power and long life. Sealed cells now show excellent rate capability and life. Cells tested in a low earth orbit (LEO) cycle have reached 9000 cycles and continue on test. High power, bipolar battery designs are ideal in applications where using conventional aerospace battery technology would require excessive capacity; weight and volume, thereby reducing usable payload on the vehicle  相似文献   
626.
Space-time adaptive processing (STAP) and related adaptive array techniques hold tremendous potential for improving sensor performance by exploiting signal diversity. Such methods have important application in radar, sonar, and communication systems. Recent advances in digital signal processing technology now provide the computational means to field STAP-based systems. The objective of this special collection of papers is to examine the current state-of-the art in STAP technology and explore the remaining obstacles, practical issues and novel techniques required to implement STAP-based radar, sonar or communication systems  相似文献   
627.
The Ultra Low Maintenance (ULM) battery technology and its historical performance validation programs are reviewed. Recent military flight test programs are discussed and the growing lists of both military and commercial aircraft flying ULM batteries are presented  相似文献   
628.
This paper reviews the progress achieved in planetary atmospheric electricity, with focus on lightning observations by present operational spacecraft, aiming to fill the hiatus from the latest review published by Desch et al. (Rep. Prog. Phys. 65:955–997, 2002). The information is organized according to solid surface bodies (Earth, Venus, Mars and Titan) and gaseous planets (Jupiter, Saturn, Uranus and Neptune), and each section presents the latest results from space-based and ground-based observations as well as laboratory experiments. Finally, we review planned future space missions to Earth and other planets that will address some of the existing gaps in our knowledge.  相似文献   
629.
The Time Structure of Ground Level Enhancements in?Solar Cycle 23   总被引:1,自引:0,他引:1  
In a recent paper McCracken et al. (J. Geophys. Res. 113:A12101, 2008) proposed that the Ground Level Enhancement (GLE) of 20 January 2005 may have been produced by more than one acceleration mechanism, with the first acceleration due to the solar flare and the second one due to the CME associated with that event. They also noted several other GLEs with similar multiple pulse structures. This paper systematically investigates all the GLEs of solar cycle 23, from GLE 55 on 6 November 1997 to GLE 70 on 13 December 2006, to study their morphology and pulse structure, and to determine whether the multiple structures that may be found in these events are qualitatively similar to that of the GLE of 20 January 2005. We use all the data of all NMs that saw each event, to have as much directional and spectral information as possible. It is shown that three of these 16 events do contain such double-pulse structures, and the properties of these three are discussed in some detail.  相似文献   
630.
A Twin-CME Scenario for Ground Level Enhancement Events   总被引:2,自引:0,他引:2  
Ground Level Enhancement (GLEs) events are extreme Solar Energetic Particle (SEP) events. Protons in these events often reach ~GeV/nucleon. Understanding the underlying particle acceleration mechanism in these events is a major goal for Space Weather studies. In Solar Cycle 23, a total of 16 GLEs have been identified. Most of them have preceding CMEs and in-situ energetic particle observations show some of them are enhanced in ICME or flare-like material. Motivated by this observation, we discuss here a scenario in which two CMEs erupt in sequence during a short period of time from the same Active Region (AR) with a pseudo-streamer-like pre-eruption magnetic field configuration. The first CME is narrower and slower and the second CME is wider and faster. We show that the magnetic field configuration in our proposed scenario can lead to magnetic reconnection between the open and closed field lines that drape and enclose the first CME and its driven shock. The combined effect of the presence of the first shock and the existence of the open close reconnection is that when the second CME erupts and drives a second shock, one finds both an excess of seed population and an enhanced turbulence level at the front of the second shock than the case of a single CME-driven shock. Therefore, a more efficient particle acceleration will occur. The implications of our proposed scenario are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号