首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5431篇
  免费   9篇
  国内免费   18篇
航空   2844篇
航天技术   1921篇
综合类   23篇
航天   670篇
  2021年   30篇
  2019年   33篇
  2018年   57篇
  2017年   31篇
  2014年   82篇
  2013年   132篇
  2012年   110篇
  2011年   157篇
  2010年   116篇
  2009年   181篇
  2008年   247篇
  2007年   136篇
  2006年   140篇
  2005年   143篇
  2004年   114篇
  2003年   170篇
  2002年   101篇
  2001年   176篇
  2000年   109篇
  1999年   140篇
  1998年   164篇
  1997年   123篇
  1996年   169篇
  1995年   215篇
  1994年   182篇
  1993年   120篇
  1992年   127篇
  1991年   76篇
  1990年   62篇
  1989年   138篇
  1988年   62篇
  1987年   66篇
  1986年   60篇
  1985年   195篇
  1984年   150篇
  1983年   130篇
  1982年   133篇
  1981年   176篇
  1980年   58篇
  1979年   41篇
  1978年   50篇
  1977年   53篇
  1976年   38篇
  1975年   58篇
  1974年   38篇
  1973年   42篇
  1972年   51篇
  1971年   42篇
  1970年   44篇
  1969年   38篇
排序方式: 共有5458条查询结果,搜索用时 15 毫秒
761.
A technique for computationally determining the thermophysical properties of high-energy-density matter (HEDM) propellants is presented. HEDM compounds are of interest in the liquid rocket engine industry due to their high density and high energy content relative to existing industry-standard propellants. In order to accurately model rocket engine performance, cost and weight in a conceptual design environment, several thermodynamic and physical properties are required over a range of temperatures and pressures. The approach presented here combines quantum mechanical and molecular dynamic (MD) calculations and group additivity methods. A method for improving the force field model coefficients used in the MD is included. This approach is used to determine thermophysical properties for two HEDM compounds of interest: quadricyclane and 2-azido-N,N-dimethylethanamine (DMAZ). The modified force field approach provides results that more accurately match experimental data than the unmodified approach. Launch vehicle and Lunar lander case studies are presented to quantify the system level impact of employing quadricyclane and DMAZ rather than industry standard propellants. In both cases, the use of HEDM propellants provides reductions in vehicle mass compared to industry standard propellants. The results demonstrate that HEDM propellants can be an attractive technology for future launch vehicle and Lunar lander applications.  相似文献   
762.
In late 2006, NASA's Constellation Program sponsored a study to examine the feasibility of sending a piloted Orion spacecraft to a near-Earth object. NEOs are asteroids or comets that have perihelion distances less than or equal to 1.3 astronomical units, and can have orbits that cross that of the Earth. Therefore, the most suitable targets for the Orion Crew Exploration Vehicle (CEV) are those NEOs in heliocentric orbits similar to Earth's (i.e. low inclination and low eccentricity). One of the significant advantages of this type of mission is that it strengthens and validates the foundational infrastructure of the United States Space Exploration Policy and is highly complementary to NASA's planned lunar sortie and outpost missions circa 2020. A human expedition to a NEO would not only underline the broad utility of the Orion CEV and Ares launch systems, but would also be the first human expedition to an interplanetary body beyond the Earth–Moon system. These deep space operations will present unique challenges not present in lunar missions for the onboard crew, spacecraft systems, and mission control team. Executing several piloted NEO missions will enable NASA to gain crucial deep space operational experience, which will be necessary prerequisites for the eventual human missions to Mars.Our NEO team will present and discuss the following:
• new mission trajectories and concepts;
• operational command and control considerations;
• expected science, operational, resource utilization, and impact mitigation returns; and
• continued exploration momentum and future Mars exploration benefits.
Keywords: NASA; Human spaceflight; NEO; Near-Earth asteroid; Orion spacecraft; Constellation program; Deep space  相似文献   
763.
Properties of the heliospheric interface, a complex product of an interaction between charged and neutral particles and magnetic fields in the heliosphere and surrounding Circumheliospheric Medium, are far from being fully understood. Recent Voyager spacecraft encounters with the termination shock and their observations in the heliosheath revealed multiple energetic particle populations and noticeable spatial asymmetries not accounted for by the classic theories. Some of the challenges still facing space physicists include the origin of anomalous cosmic rays, particle acceleration downstream of the termination shock, the role of interstellar magnetic fields in producing the global asymmetry of the interface, the influence of charge exchange and interstellar neutral atoms on heliospheric plasma flows, and the signatures of solar magnetic cycle in the heliosheath. These and other outstanding issues are reviewed in this joint report of working groups 4 and 6.  相似文献   
764.
Recent analyses of spacecraft data, especially AMPTE/IRM data, provide a test of reconnection theory; an analysis for the signature of a local tangential stress balance in a one-dimensional time-stationary rotational discontinuity has left crucial questions unanswered. A key result is that the electron temperature profile inward through the magnetopause current sheet shows heating followed by cooling. Electrons must be one of the carriers of the current; hence this result reflects the sign of E · J in the frame of reference of the magnetopause current carriers. Since the current is directed from dawn to dusk, the inescapable conclusion is that the electric field must reverse within the current sheet. This is direct evidence of a load–dynamo combination; in that dynamo, energy is transferred from the solar wind plasma to the electromagnetic field. A dynamo is not included in the reconnection model which includes only the electrical load; therefore, we argue that the reconnection problem is improperly posed. A second compelling observation is a remarkable difference of the normal component of the plasma velocity between inbound and outbound crossings. For an inbound crossing (outward current meander) this component does reverse, but not quite as assumed in the reconnection model; on the other hand, for outbound crossings of the spacecraft (corresponding to erosion) there is no reversal at all. The normal component is approximately constant at 20 km s-1, anti-Sunward throughout. Since the typical motion of the magnetopause is 10 km s-1 this revealing result shows that solar wind plasma can go across the magnetopause, even onto closed field lines to feed the low latitude boundary layer. This is in stark contrast to the reconnection model where the plasma goes to open field lines. The interaction can be understood by appealing to Poynting's theorem, where E · J describes the net effect on or by the plasma. Time-dependent terms (even in the initial conditions) must be used so that it is possible to draw upon energy which has been stored locally in both electrical and magnetic forms. An extended discussion of observational results from ground-based, rocket, and satellite instruments indicate the impulsive nature of the solar wind–magnetospheric interaction. There is a lot of plasma involved in this interaction, over 1027 ions electrons-1 per second; the anti-Sunward flow takes place in the low latitude boundary layer. There is no flux catastrophe produced by this flow since the frozen-field theorem does not hold for plasma transfer across the magnetopause. The LLBL completely envelops the plasma sheet; the LLBL is the source of its plasma, not the plasma mantle as hypothesized in the reconnection model of the magnetotail. A number of serious errors have occurred in some articles in the literature on reconnection, and we list and discuss the most important of these. In the conclusion it is emphasized that the failure to provide a viable energy source, within the necessary spatial and temporal constraints, is responsible for the failure of reconnection model. This does not mean that the state of interconnection between the geomagnetic field and the interplanetary magnetic field can not change, but it does mean that the advocated process is not relevant to such changes. True reconnection requires that the electric field has a curl so that an electromotive force = E · dl = -dMdt exists through which energy can be interchanged with stored magnetic energy.  相似文献   
765.
Most solar flare observations show that intense hard X-ray bursts come from large flares that have a large GOES classification (large peak 1 – 8 Å flux). This correlation, known as the “Big Flare Syndrome”, suggests that more intense flares tend to have harder spectra. We have observed 7 flares that are exceptions to this. These flares have small GOES classifications ranging from B1.4 to C5.5 and peak hard X-ray count rates similar to those often observed from M class flares. This paper examines the cause of this anomoly using the Yohkoh Soft X-Ray Telescope, Hard X-Ray Telescope, and Bragg Crystal Spectrometer. Two hypotheses are proposed for the exceptions: (1) flares with multiple magnetic loops and common footpoints, producing multiple hard X-ray emission regions and low density thermal plasma distributed over a large volume, and (2) high densities in the magnetic loops restricting the propagation of the non-thermal electrons in the loop after magnetic reconnection has occurred and suppressing chromospheric evaporation. Two of the flares support the first hypothesis. The other flares either have data missing or are too small to be properly analysed by the Yohkoh instruments.  相似文献   
766.
The defruiter that is employed in the Air Traffic Control Radar Beacon System (ATCRBS) to prefilter asynchronous replies has a complex impact on the detection, estimation and validation properties of the detection subsystem. Its positive and negative effects are quantitatively enumerated via a simulation of the beacon processing subsystem of the Automated Radar Terminal System (ARTS III). It is concluded that the disadvantages of using the present-day defruiter in the ARTS III digital processing channel outweigh the advantages when fruit rates are below several thousand per scan. As an alternative to the total elimination of the defruiter a more general class of preprocessors is defined and their input-output relationships are derived using a Markov Chain formulation. These are found to represent an improvement over the current defruiter in that the positive effects of defruiting are retained while some of the negative effects are reduced.  相似文献   
767.
The loss in output signal-to-noise ratio (SNR) due to amplitude limiting is obtained for a radar circuit consisting of a bandpass limiter, coherent demodulator, matched filter, and moving-target-indicator (MTI) filter. The circuit is used in scanning MTI radars. The tandem connection of the limiter and coherent demodulator is a model for the saturation of the intermediate-frequency (IF) demodulator of an MTI radar. Results on special functions are used to obtain simple formulas for the loss in output SNR relative to a linear IF demodulator when the input SNR is less than -15 dB and the number of hits per 3-dB beamwidth exceeds 15.  相似文献   
768.
A coarray-based near-field, wideband synthetic aperture beamformer using stepped-frequency signal synthesis and post-data acquisition processing is presented. While coarray techniques offer significant reduction in the number of array elements for a given angular resolution, the hybrid subarray-stepped frequency realization of wideband systems simplifies implementations and offers flexibility in beamforming. Proof of concept is provided using real data collected in an anechoic chamber for several pulse shapes and array weightings.  相似文献   
769.
The solar wind termination shock is described as a multi-fluid phenomenon taking into account the magnetohydrodynamic self-interaction of a multispecies plasma consisting of solar wind ions, pick-up ions and shock-generated anomalous cosmic ray particles. The spatial diffusion of these high energy particles relative to the resulting, pressure-modified solar wind flow structure is described by a coupled system of differential equations describing mass-, momentum-, and energy-flow continuities for all plasma components. The energy loss due to escape of energetic particles (MeV) from the precursor into the inner heliosphere is taken into account. We determine the integrated properties of the anomalous cosmic ray gas and the low-energy solar wind. Also the variation of the compression ratio of the shock structure is quantitatively determined and is related to the pick-up ion energization efficiency and to the mean energy of the downstream anomalous cosmic ray particles. The variation of the resulting shock structure and of the solar wind sheath plasma extent beyond the shock is discussed with respect to its consequences for the LISM neutral gas filtration and the threedimensional shape of the heliosphere.  相似文献   
770.
The Cosmic Ray Energetics And Mass (CREAM) instrument is configured with a suite of particle detectors to measure TeV cosmic-ray elemental spectra from protons to iron nuclei over a wide energy range. The goal is to extend direct measurements of cosmic-ray composition to the highest energies practical, and thereby have enough overlap with ground based indirect measurements to answer questions on cosmic-ray origin, acceleration and propagation. The balloon-borne CREAM was flown successfully for about 161 days in six flights over Antarctica to measure elemental spectra of Z = 1–26 nuclei over the energy range 1010 to >1014 eV. Transforming the balloon instrument into ISS-CREAM involves identification and replacement of components that would be at risk in the International Space Station (ISS) environment, in addition to assessing safety and mission assurance concerns. The transformation process includes rigorous testing of components to reduce risks and increase survivability on the launch vehicle and operations on the ISS without negatively impacting the heritage of the successful CREAM design. The project status, including results from the ongoing analysis of existing data and, particularly, plans to increase the exposure factor by another order of magnitude utilizing the International Space Station are presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号