排序方式: 共有35条查询结果,搜索用时 15 毫秒
11.
In the 36 years between June 1965 and February 2001, the US human space flight program has conducted 100 spacewalks, or extravehicular activities (EVAs), as NASA officially calls them. EVA occurs when astronauts wearing spacesuits travel outside their protective spacecraft to perform tasks in the space vacuum environment. US EVA started with pioneering feasibility tests during the Gemini Program. The Apollo Program required sending astronauts to the moon and performing EVA to explore the lunar surface. EVA supported scientific mission objectives of the Skylab program, but may be best remembered for repairing launch damage to the vehicle and thus saving the program. EVA capability on Shuttle was initially planned to be a kit that could be flown at will, and was primarily intended for coping with vehicle return emergencies. The Skylab emergency and the pivotal role of EVA in salvaging that program quickly promoted Shuttle EVA to an essential element for achieving mission objectives, including retrieving satellites and developing techniques to assemble and maintain the International Space Station (ISS). Now, EVA is supporting assembly of ISS. This paper highlights development of US EVA capability within the context of the overarching mission objectives of the US human space flight program. 相似文献
12.
Tikhomirov AA Ushakova SA Manukovsky NS Lisovsky GM Kudenko YA Kovalev VS Gribovskaya IV Tirrannen LS Zolotukhin IG Gros JB Lasseur Ch 《Acta Astronautica》2003,53(4-10):249-257
The paper considers problems of biosynthesis of higher plants' biomass and "biological incineration" of plant wastes in a working physical model of biological LSS. The plant wastes are "biologically incinerated" in a special heterotrophic block involving Californian worms, mushrooms and straw. The block processes plant wastes (straw, haulms) to produce soil-like substrate (SLS) on which plants (wheat, radish) are grown. Gas exchange in such a system consists of respiratory gas exchange of SLS and photosynthesis and respiration of plants. Specifics of gas exchange dynamics of high plants--SLS complex has been considered. Relationship between such a gas exchange and PAR irradiance and age of plants has been established. Nitrogen and iron were found to the first to limit plants' growth on SLS when process conditions are deranged. The SLS microflora has been found to have different kinds of ammonifying and denitrifying bacteria which is indicative of intensive transformation of nitrogen-containing compounds. The number of physiological groups of microorganisms in SLS was, on the whole, steady. As a result, organic substances--products of exchange of plants and microorganisms were not accumulated in the medium, but mineralized and assimilated by the biocenosis. Experiments showed that the developed model of a man-made ecosystem realized complete utilization of plant wastes and involved them into the intrasystem turnover. 相似文献
13.
14.
Organic compounds are synthesized in the interstellar medium and can be delivered to planetary surfaces such as the early Earth, where they mix with endogenous species. Some of these compounds are amphiphilic, having polar and nonpolar groups on the same molecule. Amphiphilic compounds spontaneously self-assemble into more complex structures such as bimolecular layers, which in turn form closed membranous vesicles. The first forms of cellular life required self-assembled membranes that were likely to have been produced from amphiphilic compounds on the prebiotic Earth. Laboratory simulations show that such vesicles readily encapsulate functional macromolecules, including nucleic acids and polymerases. The goal of future investigations will be to fabricate artificial cells as models of the origin of life. 相似文献
15.
Stern SA 《Astrobiology》2003,3(2):317-321
Like all low- and moderate-mass stars, the Sun will burn as a red giant during its later evolution, generating of solar luminosities for some tens of millions of years. During this post-main sequence phase, the habitable (i.e., liquid water) thermal zone of our Solar System will lie in the region where Triton, Pluto-Charon, and Kuiper Belt objects orbit. Compared with the 1 AU habitable zone where Earth resides, this "delayed gratification habitable zone" (DGHZ) will enjoy a far less biologically hazardous environment - with lower harmful radiation levels from the Sun, and a far less destructive collisional environment. Objects like Triton, Pluto-Charon, and Kuiper Belt objects, which are known to be rich in both water and organics, will then become possible sites for biochemical and perhaps even biological evolution. The Kuiper Belt, with >10(5) objects > or =50 km in radius and more than three times the combined surface area of the four terrestrial planets, provides numerous sites for possible evolution once the Sun's DGHZ reaches it. The Sun's DGHZ might be thought to only be of academic interest owing to its great separation from us in time. However, approximately 10(9) Milky Way stars burn as luminous red giants today. Thus, if icy-organic objects are common in the 20-50 AU zones of these stars, as they are in our Solar System (and as inferred in numerous main sequence stellar disk systems), then DGHZs may form a niche type of habitable zone that is likely to be numerically common in the Galaxy. 相似文献
16.
The recent discovery of methane in the martian atmosphere is arguably one of the most important discoveries in the field of astrobiology. One possible source of this methane could be a microorganism analogous to those on Earth in the domain Archaea known as methanogens. Methanogens are described as obligately anaerobic, and methods developed to work with methanogens typically include anaerobic media and buffers, gassing manifolds, and possibly anaerobic chambers. To determine if the time, effort, and supplies required to maintain anaerobic conditions are necessary to maintain viability, we compared anaerobically washed cells with cells that were washed in the presence of atmospheric oxygen. Anaerobic tubes were opened, and cultures were poured into plastic centrifuge tubes, centrifuged, and suspended in fresh buffer, all in the presence of atmospheric oxygen. Washed cells from both aerobic and anaerobic procedures were inoculated into methanogenic growth media under anaerobic conditions and incubated at temperatures conducive to growth for each methanogenic strain tested. Methane production was measured at time intervals using a gas chromatograph. In three strains, significant differences were not seen between aerobically and anaerobically washed cells. In one strain, there was significantly less methane production observed following aerobic washing at some time points; however, substantial methane production occurred following both procedures. Thus, it appears that aerobic manipulations for relatively short periods of time with at least a few species of methanogens may not lead to loss of viability. With the discovery of methane in the martian atmosphere, it is likely that there will be an increase in astrobiology-related methanogen research. The research reported here should simplify the methodology. 相似文献
17.
Delory GT Farrell WM Atreya SK Renno NO Wong AS Cummer SA Sentman DD Marshall JR Rafkin SC Catling DC 《Astrobiology》2006,6(3):451-462
Laboratory studies, numerical simulations, and desert field tests indicate that aeolian dust transport can generate atmospheric electricity via contact electrification or "triboelectricity." In convective structures such as dust devils and dust storms, grain stratification leads to macroscopic charge separations and gives rise to an overall electric dipole moment in the aeolian feature, similar in nature to the dipolar electric field generated in terrestrial thunderstorms. Previous numerical simulations indicate that these storm electric fields on Mars can approach the ambient breakdown field strength of approximately 25 kV/m. In terrestrial dust phenomena, potentials ranging from approximately 20 to 160 kV/m have been directly measured. The large electrostatic fields predicted in martian dust devils and storms can energize electrons in the low pressure martian atmosphere to values exceeding the electron dissociative attachment energy of both CO2 and H2O, which results in the formation of the new chemical products CO/O- and OH/H-, respectively. Using a collisional plasma physics model, we present calculations of the CO/O- and OH/H- reaction and production rates. We demonstrate that these rates vary geometrically with the ambient electric field, with substantial production of dissociative products when fields approach the breakdown value of approximately 25 kV/m. The dissociation of H2O into OH/H- provides a key ingredient for the generation of oxidants; thus electrically charged dust may significantly impact the habitability of Mars. 相似文献
18.
Lick Observatory's Optical SETI (search for extraterrestrial intelligence) program has been in regular operation for 4.5 years. We have observed 4,605 stars of spectral types F-M within 200 light-years of Earth. Occasionally, we have appended objects of special interest, such as stars with known planetary systems. We have observed 14 candidate signals ("triple coincidences"), all but one of which are explained by transient local difficulties. Additional observations of the remaining candidate have failed to confirm arriving pulse events. We now plan to proceed in a more economical manner by operating in an unattended drift scan mode. Between operational and equipment modifications, efficiency will more than double. 相似文献
19.
Tolerance of LSS plant component to elevated temperatures 总被引:1,自引:0,他引:1
Stability of LSS based on biological regeneration of water, air and food subject to damaging factors is largely dependent on the behavior of the photosynthesizing component represented, mainly, by higher plants. The purpose of this study is to evaluate the tolerance of uneven-aged wheat and radish cenoses to temperature effects different in time and value. Estimation of thermal tolerance of plants demonstrated that exposure for 20 h to the temperature increasing to 45°C brought about irreversible damage both in photosynthetic processes (up to 80% of initial value) and the processes of growth and development. Kinetics of visible photosynthesis during exposure to elevated temperatures can be used to evaluate critical exposure time within the range of which the damage of metabolic processes is reversible. With varying light intensity and air temperature it is possible to find a time period admissible for the plants to stay under adverse conditions without considerable damage of metabolic processes. 相似文献
20.
Although not yet identified in the interstellar medium (ISM), N-heterocycles including nucleobases-the information subunits of DNA and RNA-are present in carbonaceous chondrites, which indicates that molecules of biological interest can be formed in non-terrestrial environments via abiotic pathways. Recent laboratory experiments and ab initio calculations have already shown that the irradiation of pyrimidine in pure H(2)O ices leads to the formation of a suite of oxidized pyrimidine derivatives, including the nucleobase uracil. In the present work, NH(3):pyrimidine and H(2)O:NH(3):pyrimidine ice mixtures with different relative proportions were irradiated with UV photons under astrophysically relevant conditions. Liquid- and gas-chromatography analysis of the resulting organic residues has led to the detection of the nucleobases uracil and cytosine, as well as other species of prebiotic interest such as urea and small amino acids. The presence of these molecules in organic residues formed under abiotic conditions supports scenarios in which extraterrestrial organics that formed in space and were subsequently delivered to telluric planets via comets and meteorites could have contributed to the inventory of molecules that triggered the first biological reactions on their surfaces. 相似文献