全文获取类型
收费全文 | 9325篇 |
免费 | 27篇 |
国内免费 | 27篇 |
专业分类
航空 | 4306篇 |
航天技术 | 3268篇 |
综合类 | 32篇 |
航天 | 1773篇 |
出版年
2021年 | 97篇 |
2019年 | 58篇 |
2018年 | 201篇 |
2017年 | 132篇 |
2016年 | 139篇 |
2015年 | 69篇 |
2014年 | 238篇 |
2013年 | 279篇 |
2012年 | 277篇 |
2011年 | 413篇 |
2010年 | 291篇 |
2009年 | 449篇 |
2008年 | 504篇 |
2007年 | 277篇 |
2006年 | 224篇 |
2005年 | 253篇 |
2004年 | 234篇 |
2003年 | 298篇 |
2002年 | 195篇 |
2001年 | 304篇 |
2000年 | 170篇 |
1999年 | 205篇 |
1998年 | 256篇 |
1997年 | 163篇 |
1996年 | 220篇 |
1995年 | 270篇 |
1994年 | 259篇 |
1993年 | 163篇 |
1992年 | 206篇 |
1991年 | 89篇 |
1990年 | 75篇 |
1989年 | 195篇 |
1988年 | 88篇 |
1987年 | 84篇 |
1986年 | 92篇 |
1985年 | 242篇 |
1984年 | 189篇 |
1983年 | 166篇 |
1982年 | 179篇 |
1981年 | 283篇 |
1980年 | 80篇 |
1979年 | 73篇 |
1978年 | 70篇 |
1977年 | 55篇 |
1975年 | 66篇 |
1974年 | 53篇 |
1973年 | 54篇 |
1972年 | 57篇 |
1971年 | 52篇 |
1970年 | 52篇 |
排序方式: 共有9379条查询结果,搜索用时 15 毫秒
661.
Vanjari S.V. Krogmeier J.V. Bell M.R. 《IEEE transactions on aerospace and electronic systems》2007,43(4):1426-1440
In sensor networks distributed over large areas, communication by means of active transmitters on sensor nodes is inherently energy expensive and poses a significant bottleneck to achieve a long battery life. We propose modulated reradiation of radar illumination as a means to transmit information from a group of sensors to an airborne radar. This puts the communications energy burden on the radar transmitter rather than on the sensor nodes, thus increasing their battery lifetimes. To distinguish the sensor return from the clutter return, the modulation on the sensors is done by switching a nonlinear load on the sensor antenna and processing the harmonic reradiation. We present techniques to transmit information from the sensors, which use stripmap mode synthetic aperture radar (SAR) ideas to decode the information and to simultaneously obtain a geographic map of the sensor locations. 相似文献
662.
D. B. Reisenfeld D. S. Burnett R. H. Becker A. G. Grimberg V. S. Heber C. M. Hohenberg A. J. G. Jurewicz A. Meshik R. O. Pepin J. M. Raines D. J. Schlutter R. Wieler R. C. Wiens T. H. Zurbuchen 《Space Science Reviews》2007,130(1-4):79-86
Analysis of the Genesis samples is underway. Preliminary elemental abundances based on Genesis sample analyses are in good
agreement with in situ-measured elemental abundances made by ACE/SWICS during the Genesis collection period. Comparison of
these abundances with those of earlier solar cycles indicates that the solar wind composition is relatively stable between
cycles for a given type of flow. ACE/SWICS measurements for the Genesis collection period also show a continuum in compositional
variation as a function of velocity for the quasi-stationary flow that defies the simple binning of samples into their sources
of coronal hole (CH) and interstream (IS). 相似文献
663.
MESSENGER: Exploring Mercury’s Magnetosphere 总被引:1,自引:0,他引:1
James A. Slavin Stamatios M. Krimigis Mario H. Acuña Brian J. Anderson Daniel N. Baker Patrick L. Koehn Haje Korth Stefano Livi Barry H. Mauk Sean C. Solomon Thomas H. Zurbuchen 《Space Science Reviews》2007,131(1-4):133-160
The MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission to Mercury offers our first opportunity
to explore this planet’s miniature magnetosphere since the brief flybys of Mariner 10. Mercury’s magnetosphere is unique in
many respects. The magnetosphere of Mercury is among the smallest in the solar system; its magnetic field typically stands
off the solar wind only ∼1000 to 2000 km above the surface. For this reason there are no closed drift paths for energetic
particles and, hence, no radiation belts. Magnetic reconnection at the dayside magnetopause may erode the subsolar magnetosphere,
allowing solar wind ions to impact directly the regolith. Inductive currents in Mercury’s interior may act to modify the solar
wind interaction by resisting changes due to solar wind pressure variations. Indeed, observations of these induction effects
may be an important source of information on the state of Mercury’s interior. In addition, Mercury’s magnetosphere is the
only one with its defining magnetic flux tubes rooted beneath the solid surface as opposed to an atmosphere with a conductive
ionospheric layer. This lack of an ionosphere is probably the underlying reason for the brevity of the very intense, but short-lived,
∼1–2 min, substorm-like energetic particle events observed by Mariner 10 during its first traversal of Mercury’s magnetic
tail. Because of Mercury’s proximity to the sun, 0.3–0.5 AU, this magnetosphere experiences the most extreme driving forces
in the solar system. All of these factors are expected to produce complicated interactions involving the exchange and recycling
of neutrals and ions among the solar wind, magnetosphere, and regolith. The electrodynamics of Mercury’s magnetosphere are
expected to be equally complex, with strong forcing by the solar wind, magnetic reconnection, and pick-up of planetary ions
all playing roles in the generation of field-aligned electric currents. However, these field-aligned currents do not close
in an ionosphere, but in some other manner. In addition to the insights into magnetospheric physics offered by study of the
solar wind–Mercury system, quantitative specification of the “external” magnetic field generated by magnetospheric currents
is necessary for accurate determination of the strength and multi-polar decomposition of Mercury’s intrinsic magnetic field.
MESSENGER’s highly capable instrumentation and broad orbital coverage will greatly advance our understanding of both the origin
of Mercury’s magnetic field and the acceleration of charged particles in small magnetospheres. In this article, we review
what is known about Mercury’s magnetosphere and describe the MESSENGER science team’s strategy for obtaining answers to the
outstanding science questions surrounding the interaction of the solar wind with Mercury and its small, but dynamic, magnetosphere. 相似文献
664.
L. Colangeli J. J. Lopez-Moreno P. Palumbo J. Rodriguez M. Cosi V. Della Corte F. Esposito M. Fulle M. Herranz J. M. Jeronimo A. Lopez-Jimenez E. Mazzotta Epifani R. Morales F. Moreno E. Palomba A. Rotundi 《Space Science Reviews》2007,128(1-4):803-821
The Grain Impact Analyser and Dust Accumulator (GIADA) onboard the ROSETTA mission to comet 67P/Churyumov–Gerasimenko is devoted
to study the cometary dust environment. Thanks to the rendezvous configuration of the mission, GIADA will be plunged in the
dust environment of the coma and will be able to explore dust flux evolution and grain dynamic properties with position and
time. This will represent a unique opportunity to perform measurements on key parameters that no ground-based observation
or fly-by mission is able to obtain and that no tail or coma model elaborated so far has been able to properly simulate. The
coma and nucleus properties shall be, then, clarified with consequent improvement of models describing inner and outer coma
evolution, but also of models about nucleus emission during different phases of its evolution. GIADA shall be capable to measure
mass/size of single particles larger than about 15 μm together with momentum in the range 6.5 × 10−10 ÷ 4.0 × 10−4 kg m s−1 for velocities up to about 300 m s−1. For micron/submicron particles the cumulative mass shall be detected with sensitivity 10−10 g. These performances are suitable to provide a statistically relevant set of data about dust physical and dynamic properties
in the dust environment expected for the target comet 67P/Churyumov–Gerasimenko. Pre-flight measurements and post-launch checkouts
demonstrate that GIADA is behaving as expected according to the design specifications.
The International GIADA Consortium (I, E, UK, F, D, USA). 相似文献
665.
V. S. Heber R. C. Wiens D. B. Reisenfeld J. H. Allton H. Baur D. S. Burnett C. T. Olinger U. Wiechert R. Wieler 《Space Science Reviews》2007,130(1-4):309-316
The concentrator on Genesis provided samples of increased fluences of solar wind ions for precise determination of the oxygen
isotopic composition. The concentration process caused mass fractionation as a function of the radial target position. This
fractionation was measured using Ne released by UV laser ablation and compared with modelled Ne data, obtained from ion-trajectory
simulations. Measured data show that the concentrator performed as expected and indicate a radially symmetric concentration
process. Measured concentration factors are up to ∼30 at the target centre. The total range of isotopic fractionation along
the target radius is 3.8%/amu, with monotonically decreasing 20Ne/22Ne towards the centre, which differs from model predictions. We discuss potential reasons and propose future attempts to overcome
these disagreements. 相似文献
666.
A. I. Belousov S. V. Falaleev A. S. Vinogradov P. V. Bondarchuk 《Russian Aeronautics (Iz VUZ)》2007,50(4):390-394
Problems arising in introduction of gasodynamic seals in aircraft engines are considered. The operation of a face gasodynamic seal as part of a natural gas pump is analyzed and its efficiency in the presence of oil is shown. 相似文献
667.
V. A. Ovchinnikov 《Russian Aeronautics (Iz VUZ)》2007,50(2):146-149
We analyze the effect of injection both of uniformly distributed over the entire cylinder surface and of the optimal one on the velocity distribution at the outer border of the boundary layer and, as a result, on friction. 相似文献
668.
Epocast 50-A1/946 epoxy was primarily developed for joining and repairing of composite aircraft structural components. The objective of the present work is to modify the Epocast epoxy resin by different nanofillers infusion. The used nanofillers include multi-walled carbon nanotubes(MWCNTs), SiC and Al2O3 nanoparticles. The nanofillers with different weight percentages are ultrasonically dispersed in the epoxy resin. The sonication time and amplitude for MWCNTs are reduced compared to Al2O3 and SiC nanoparticles to avoid the damage of MWCNTs during sonication processes. The fabricated neat epoxy and twelve nanocomposite panels were characterized via standard tension and in-plane shear tests. The experimental results show that the nanocomposites materials with 0.5wt% MWCNTs, 1.5wt% SiC and 1.5wt% Al2O3 nanoparticles have the highest improvement in the tensile properties compared to the other nanofiller loading percentages.The improvements in the shear properties of these nanocomposite materials were respectively equal to 5.5%, 4.9%, and 6.3% for shear strengths, and 10.3%, 16.0%, and 8.1% for shear moduli. The optimum nanofiller loading percentages will be used in the following papers concerning their effect on the bonded joints/repairs of carbon fiber reinforced composites. 相似文献
669.
A.M. Unewisse 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2021,67(3):1026-1038
Mean night-time peak power, Doppler shift and Doppler width of spread Doppler clutter (SDC) received by a high frequency backscatter radar located at Alice Springs, Australia from 2000 to 2018 is presented as a function of azimuth, sunspot number, time of year and frequency. The sampled region covers 90 degrees from West to North and includes the northern and southern equatorial anomalies.SDC peak power diminished across all azimuths during the winter solstice from around May to August (local winter) coinciding with the global decrease in F layer density due to the annual non-seasonal F2 anomaly but was generally constant during the equinoxes. In contrast, SDC Doppler width and inbound Doppler shift both increased during the equinoxes and exhibited azimuthal dependence related to the eastward equatorial plasma drift.SDC peak power increased with increasing sunspot number with frequency dependence during winter but not summer. Inbound Doppler shift and Doppler width increased with increasing sunspot number during equinox but not solstice with a strong dependence on azimuth and a weak dependence on frequency. 相似文献
670.
M. Naim A. Ali Pacha C. Serief 《Advances in Space Research (includes Cospar's Information Bulletin, Space Research Today)》2021,67(7):2077-2103
With the rapid growth of the number of Earth observation satellite (EOS) supporting critical applications, it is required to improve the security techniques to protect the sensitive data and images during the transmission between the satellites and the ground stations. This paper introduces a new satellite image encryption algorithm based on the Linear Feedback Shift Register (LFSR) generator, SHA 512 hash function, hyperchaotic systems, and Josephus problem. LFSR generates a matrix that is used to construct the 512-bits value of the hash function. These bits are used to set the initial values and parameters of the proposed encryption algorithm. Firstly, the six dimensions (6-D) hyperchaotic system is divided into three parts, where every two equations are considered as one part. Secondly, the 1-D hyperchaotic logistic-tent system is considered as the controller to select one part. The selected part is used to generate a matrix that is XORed with the original image. Thirdly, the scrambling operation by Josephus sequences is applied to the output of the previous step by scrambling the rows and the columns according to the selected part to produce the pre-encrypted image. Finally, if the number of iterations is less than the required number which is considered as a parameter of the secret key, the previous operations will be repeated in the pre-encrypted image; otherwise, the pre-encrypted image is considered as the final cipher image. Experimental and analyses results show that the proposed algorithm has good performance in terms of high level of security, large enough key-space, tolerance to Single Event Upsets (SEU) as well as low time complexity. 相似文献