首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18984篇
  免费   43篇
  国内免费   124篇
航空   10114篇
航天技术   5717篇
综合类   252篇
航天   3068篇
  2021年   158篇
  2018年   256篇
  2017年   146篇
  2016年   171篇
  2014年   433篇
  2013年   516篇
  2012年   441篇
  2011年   641篇
  2010年   451篇
  2009年   796篇
  2008年   833篇
  2007年   434篇
  2006年   436篇
  2005年   438篇
  2004年   475篇
  2003年   567篇
  2002年   491篇
  2001年   616篇
  2000年   376篇
  1999年   473篇
  1998年   466篇
  1997年   345篇
  1996年   412篇
  1995年   476篇
  1994年   479篇
  1993年   361篇
  1992年   361篇
  1991年   253篇
  1990年   241篇
  1989年   414篇
  1988年   206篇
  1987年   243篇
  1986年   238篇
  1985年   644篇
  1984年   523篇
  1983年   418篇
  1982年   486篇
  1981年   618篇
  1980年   246篇
  1979年   190篇
  1978年   189篇
  1977年   147篇
  1976年   156篇
  1975年   190篇
  1974年   180篇
  1973年   161篇
  1972年   188篇
  1971年   148篇
  1970年   143篇
  1969年   147篇
排序方式: 共有10000条查询结果,搜索用时 406 毫秒
251.
A coherent CW superheterodyne radar system operating at frequencies of 9, 17, 35, and 70 GHz is described. The radars are installed on a free-flight range to study backscattering from wakes of hypersonic-velocity projectiles. Each radar is equipped with a focused-lens antenna oriented at an angle of approximately 45° to the flight axis. Amplitude and phase of the received signal are recorded separately. Some typical results are given to demonstrate the capabilities of the equipment.  相似文献   
252.
This paper considers the problem arising from the design of an autopilot for a large booster. The motion-controlling actuators of the booster have both position and rate limits. The problem is formulated as a bounded phase-coordinate problem and analyzed by the ``backing out of the target' procedure. A method of constructing the optimal control is presented. An example of an oscillatory system with two control inputs is given, and the optimal control is expressed as an explicit time function.  相似文献   
253.
Various methods are presented for estimating the flight time for vehicles which fly an optimum trajectory. A realistic example is considered in order to display the inherent accuracy of each of these methods. Numerical integration methods are found to be the most accurate. Simple formulas are derived for the case where a less accurate estimate is acceptable. All of these methods require less computation than would be required in order to solve the overall optimization problem. Thus any one of these methods can be applied to an onboard guidance scheme or control system which requires a real time estimate of the time-to-go.  相似文献   
254.
The analysis and comments presented in this paper are meant to establish the general communication parameters associated with Martian flyby probes and with lander and manned vehicles. Fundamental data transfer problems are reviewed to define comparisons and trends of tradeoffs for future studies. Selected focal points are based upon the long propagation path length, with inherent time delays, and the high noise produced by the sun. These problems are magnified because large quantities of data must be obtained to satisfy the needs of the scientific community and the curiosity of an interested public. A comparison of two communication systems is provided: the microwave spectrum and the optical spectrum, as represented by the microwaves at 2.3 GHz and the laser at 6328 ?. A method of cost effectiveness or value received from space missions (a criterion of power input for data quantity received) is also presented.  相似文献   
255.
On-board/in-flight checkout of future aerospace systems will necessitate a fundamental departure from today's design and checkout activities. The interrelationship of checkout, incorporated into prime vehicular functions, man as a subsystem, and standardization Of hardware/software must be considered as a functional and integral entity if the efforts of today's long-range planning are to become tomorrow's reality. This paper will describe future systems checkout, maintenance and support considerations, and actions and tentative measures necessary for implementation. The realization of the implementation of these concepts into functional elements will depend, accurately and economically, upon the degree of government perceptiveness and the extent of industrial support.  相似文献   
256.
The fundamental problem of inertial navigation, double integration of acceleration to obtain position, is defined and discussed. Mechanizations of both space-stable and local-vertical platform systems are exhibited. The synthesis problem for an electrically suspended gyro (ESG) strapdown system is defined and discussed: readout, readout errors due to vehicle motion, synchronization of readout with system computer, alignment, correction and calibration for mass unbalance drift, and digital mechanization. Alignment, calibration, and acceleration measurement are also discussed. Sources of error involved in the electronic gimbaling including those peculiar to strapdown configuration are discussed and compared to mechanically gimbaled systems. Advanced developments required in the component and systems areas are listed, and it is shown that such development will lead to reduced complexity, higher accuracy, and increased reliability and utility for inertial systems.  相似文献   
257.
In the first part the state of the art of the most advanced micrometeoroid simulation techniques is reviewed. Then a new accelerator is described, which was developed jointly by the Technische Universität München and the N.A.S.A. George C. Marshall Space Flight Center. Finally the use of this new technique is indicated for basic research in fields other than astronautics.  相似文献   
258.
A quartz sensor of small accelerations with a capacitive transducer is designed and produced, allowing one to measure spacecraft accelerations with a resolution of 10–7 m/s2 in the range ±10–1 m/s2. The results of calibration of the sensor by the method of inclinations are presented.  相似文献   
259.
The Active Rack Isolation System [ARIS] International Space Station [ISS] Characterization Experiment, or ARIS-ICE for short, is a long duration microgravity characterization experiment aboard the ISS. The objective of the experiment is to fully characterize active microgravity performance of the first ARIS rack deployed on the ISS. Efficient ground and on-orbit command and data handling [C&DH] segments are the crux in achieving the challenging objectives of the mission. The objective of the paper is to provide an overview of the C&DH architectures developed for ARIS-ICE, with the view that these architectures may serve as a model for future ISS microgravity payloads. Both ground and on-orbit segments, and their interaction with corresponding ISS C&DH systems are presented. The heart of the on-orbit segment is the ARIS-ICE Payload On-orbit Processor, ARIS-ICE POP for short. The POP manages communication with the ISS C&DH system and other ISS subsystems and payloads, enables automation of test/data collection sequences, and provides a wide range of utilities such as efficient file downlinks/uplinks, data post-processing, data compression and data storage. The hardware and software architecture of the POP is presented and it is shown that the built-in functionality helps to dramatically streamline the efficiency of on-orbit operations. The ground segment has at its heart special ARIS-ICE Ground Support Equipment [GSE] software developed for the experiment. The software enables efficient command and file uplinks, and reconstruction and display of science telemetry packets. The GSE software architecture is discussed along with its interactions with ISS ground C&DH elements. A test sequence example is used to demonstrate the interplay between the ground and on-orbit segments.  相似文献   
260.
Kicza M  Erickson K  Trinh E 《Acta Astronautica》2003,53(4-10):659-663
Recent events in the International Space Station (ISS) Program have resulted in the necessity to re-examine the research priorities and research plans for future years. Due to both technical and fiscal resource constraints expected on the International Space Station, it is imperative that research priorities be carefully reviewed and clearly articulated. In consultation with OSTP and the Office of Management and budget (OMB), NASA's Office of Biological and Physical Research (OBPR) assembled an ad-hoc external advisory committee, the Biological and Physical Research Maximization and Prioritization (REMAP) Task Force. This paper describes the outcome of the Task Force and how it is being used to define a roadmap for near and long-term Biological and Physical Research objectives that supports NASA's Vision and Mission. Additionally, the paper discusses further prioritizations that were necessitated by budget and ISS resource constraints in order to maximize utilization of the International Space Station. Finally, a process has been developed to integrate the requirements for this prioritized research with other agency requirements to develop an integrated ISS assembly and utilization plan that maximizes scientific output.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号